
САНКТ-ПЕТЕРБУРГ
МОСКВА

КРАСНОДАР

ЛАНЬ

Книги для программистов: https://t.me/booksforits

Т. П. НИКИТИНА,
Л. В. КОРОЛЕВ

ПРОГРАММИРОВАНИЕ. ОСНОВЫ PYTHON ДЛЯ ИНЖЕНЕРОВ
Учебное пособие

ЛАНЬ
• САНКТ-ПЕТЕРБУРГ • МОСКВА • КРАСНОДАР •

2023

Книги для программистов: https://t.me/booksforits

УДК 004.43
ББК 22.19я73

Н 62 Никитина Т. П. Программирование. Основы Python для ин­
женеров : учебное пособие для вузов /Т.П. Никитина, Л. В. Ко­
ролев. — Санкт-Петербург : Лань, 2023. — 156 с. : ил. — Текст :
непосредственный.

ISBN 978-5-507-45284-2

Пособие посвящено рассмотрению базовых конструкций языка Python, в
частности, сначала приведены примеры простейших программ в императивном
стиле программирования и примеры решения несложных задач линейной, раз­
ветвляющейся и циклической структуры, задач с последовательностями и фай­
лами. Далее дана реализация в виде программ на Python алгоритмов методов
вычислительной математики. Большое внимание уделено практике использования
библиотек numpy, matplotlib, pandas и turtle, для анализа данных и их графической
интерпретации.

Учебное пособие предназначено для использования в учебном процессе сту­
дентами, обучающимися по направлениям подготовки «Технологические машины
и оборудование», «Химия», «Энергетическое машиностроение», «Эксплуатация
транспортно-технологических машин и комплексов» и других инженерных спе­
циальностей всех форм обучения при изучении дисциплин математического и
естественнонаучного цикла. Учебное пособие разработано в соответствиями с
требованиями Федерального государственного образовательного стандарта.

Рецензент

УДК 004.43
ББК 22.19я73

В. А. СОКОЛОВ — доктор физико-математических наук, профессор, зав. кафед­
рой теоретической информатики Ярославского государственного университета
им. П. Г. Демидова.

Обложка
П. И. ПОЛЯКОВА

© Издательство «Лань», 2023
© Т. П. Никитина, Л. В. Королев, 2023
© Издательство «Лань»,

художественное оформление, 2023

Книги для программистов: https://t.me/booksforits

Введение

Язык программирования Python разработал голландец Гвидо ван
Россум. Python — интерпретируемый, объектно-ориентированный
высокоуровневый язык программирования с динамической семанти­
кой. Встроенные высокоуровневые структуры данных в сочетании с
динамической типизацией и связыванием делают язык привлекатель­
ным для быстрой разработки приложений (RAD, Rapid Application
Development). Кроме того, его можно использовать в качестве сценар­
ного языка для связи программных компонентов.

Интерпретатор выполняет инструкции построчно: после при­
глашения к работе записывается строка с необходимыми действиями,
после нажатия клавиши Enter, интерпретатор выдает результат. Python
можно использовать как калькулятор.

Другой вариант работы — работа в среде разработки IDLE
(Integrated Development and Learning Environment).

5

Книги для программистов: https://t.me/booksforits

Основные понятия и инструкции Python

Структура программы
Программы на языке Python состоят из инструкций и являются

обычными текстовыми файлами, которые обычно имеют расширение
.ру. Эти файлы для просмотра и редактирования можно открывать с
помощью любого текстового редактора, например программы Блок­
нот.

Правила записи инструкций.
> Конец строки является концом инструкции.
> Вложенные инструкции объединяются в блоки по величине от­

ступов.
> Отступ может быть любым, главное, чтобы в пределах одного

вложенного блока был одинаковый отступ. Не следует использо­
вать отступ в один пробел, так как существенно снижается
наглядность и восприятие человеком блочной структуры про­
граммы. Используйте четыре пробела (знак табуляции).

> Вложенные инструкции в Python записываются по следующему
шаблону: основная инструкция завершается двоеточием, вслед за
которым, чаще всего после нажатия клавиши Enter, располагается
вложенный блок кода с необходимым отступом:

for i in range (0, n):
if a[0][i]>0: k+=1
if а[п-1] [i]>0: к+=1

> Тело составной инструкции может располагаться в той же строке,
что и тело основной, если тело составной инструкции не содер­
жит составных инструкций:

if х > у: print(x)

6

https://t.me/it_boooks/2

Книги для программистов: https://t.me/booksforits

> Можно записать несколько инструкций в одной строке, разделяя
их точкой с запятой:

а = 1; b = 2; print (а, Ь)

> Допустимо записывать одну инструкцию на нескольких строках.
Достаточно ее заключить в пару круглых, квадратных или фигур­
ных скобок:

if (а == 1 and b == 2 and
с == 3 and d == 4): # Не забываем про двоеточие
print ('if занимает две строки')

Имена переменных
Каждый объект программы должен иметь идентификатор, зада­

ваемый пользователем. На основе идентификатора строится имя объ­
екта, которое позволяет обращаться как ко всему объекту, так и к от­
дельным его составляющим.

Синтаксические конструкции Python записывают с использова­
нием уникальных ключевых слов, которые нельзя использовать в ка­
честве идентификаторов.

Список ключевых слов можно получить с помощью следующих
инструкций:

import keyword
print(keyword.kwlist)

Результат

['and', 'assert', 'break', 'class', 'continue', 'def, 'del',
'elif, 'else', 'except', 'exec', 'finally', for', from',
'global', 'if, 'import', 'in', 'is', 'lambda', 'not', 'or',
'pass', 'print', 'raise', 'return', 'try', 'while', 'yield"]

7

Книги для программистов: https://t.me/booksforits

Переменную можно связать с объектом в любом месте блока,
важно, чтобы это произошло до ее использования, иначе появится
синтаксическая ошибка NameError. В частности, связывание имен со
значениями происходит в инструкциях присваивания.

Правила записи.
> Всегда следует связывать переменную со значением до ее исполь­

зования.
> Необходимо избегать глобальных переменных и передавать все

необходимые данные через параметры.
> Убрать связь имени с объектом можно с помощью оператора del.

В этом случае, если объект не имеет других ссылок на него, он
будет удален. Для управления памятью в Python используется
подсчет ссылок, для удаления наборов объектов с зацикленными
ссылками — сборка мусора (garbage collection).

В каждой точке программы интерпретатор «видит» три про­
странства имен: локальное, глобальное и встроенное. Пространство
имен связано с понятием блока кода. В Python блоком кода является
то, что исполняется как единое целое, например тело цикла, функции,
условной инструкции.

Локальные имена — имена, которым присвоено значение в бло­
ке, доступны только в нем. Глобальные имена— имена, определяе­
мые на уровне блока модуля или те, которые явно заданы как global.
Встроенные имена — имена из специального словаря builtins.

Области видимости имен могут быть вложенными друг в друга,
например, внутри вызванной функции видны имена, определенные в
вызывающем коде. Переменные, которые используются в блоке кода,
но связаны со значением вне кода, называются свободными перемен­
ными.

Константы и переменные
Данные представлены константами и переменными. Все данные

в Python представляют собой объекты.

8

Книги для программистов: https://t.me/booksforits

Каждый объект содержит как минимум три вида данных:
> счетчик ссылок — используется для управления памятью;
> тип;
> значение.

Python — это язык программирования с динамической типиза­
цией, то есть в ходе выполнения программы одна и та же переменная
может хранить значения различных типов. Типы данных можно раз­
делить на встроенные в интерпретатор и не встроенные, которые
можно использовать при импортировании соответствующих модулей.

В языке Python, как и в других языках программирования,
например C++, различают неизменяемые (константные) и изменяемые
типы данных. Основное различие при работе с ними заключается в
том, что для данных с неизменяемым типом запрещены инструкции,
меняющие значение объекта.

К основным встроенным типам относятся следующие.
> None (неопределенное значение переменной).
> Логические значения:

■ True',
■ False.

> Числа (неизменяемые типы):
■ int — целое число;
■ float — вещественное число;
■ complex — комплексное число.

> Списки:
■ list — список;
■ tuple — кортеж (неизменяемый тип);
■ range — диапазон (неизменяемый тип).

> Строки str (неизменяемый тип).
Арифметические константы могут быть представлены в про­

грамме своими значениями (явно):
> целые числа 4 687 -45 0;
> вещественные значения:

■ с фиксированной точкой 1.45 -3.789654 0.00453;

9

Книги для программистов: https://t.me/booksforits

с плавающей точкой 1.0Е-5 -5.123е2 0.1234E3.

Операции. Присваивание. Выражение
Операция — выполнение каких-либо действий над данными

(операндами). Для выполнения конкретных действий требуются спе­
циальные инструменты — операторы.

В программе на языке Python связь между данными и перемен­
ными задается с помощью знака «=». Такая операция называется при­
сваиванием.

Простое присваивание: <имя> = <выражение>
Пример: а = 2
Переменная с именем а связывается со значением 2.
Каскадное присваивание: z = а = 0, в этом примере происходит

обнуление значений переменных z и а.
Множественное присваивание:
z, а = 0, -1 в результате z = 0, а = -1.
Пример

i = 1; х = 2.21
i = х = О
z,x =-3,2.5**2
Составное присваивание позволяет сократить запись:

Операция Действие

а+=Ь а=а+Ь

а-=Ь а=а-Ь

а*=Ь а=а*Ь

а/=Ь а=а/Ь

а**=Ь а=а**Ь

а°/о=Ь а=а%Ь

а//=Ь а=а//Ь

10

Книги для программистов: https://t.me/booksforits

Пример

z, zl=O, -1
print (" z=",z," zl = ", zl)
z+=3
print (" z=", z)
z*=2
print (" z=", z)
zl/=2
print (" zl = ", zl)

Результат

Выражение — правило для вычисления значения. Состоит из
операндов, соединенных знаками операций. В качестве операндов мо­
гут выступать переменные, константы, указатели функций, выражения
в круглых скобках.

Тип переменной в левой части оператора присваивания должен
совпадать с типом значения выражения в правой части. Возможны
случаи, когда выполняется автоматическое преобразование, при кото­
ром исключены какие-либо потери. Например, слева от знака присва­
ивания стоит переменная вещественного типа, а справа — выражение
целого типа. В этом случае целое автоматически преобразуется к ве­
щественному значению и при этом исключается потеря точности.

Выражения являются составной частью операторов. Вычисление
выражений осуществляется слева направо, за исключением операции
возведения в степень (справа налево), с учетом наличия круглых ско­
бок и приоритетом операций.

11

Книги для программистов: https://t.me/booksforits

Приоритеты операций
Приоритеты операций по возрастанию приоритета:

Операция Название Приоритет

lambda лямбда-выражение низкий

or логическое ИЛИ

▼

and логическое И

not X логическое НЕ

in, not in проверка принадлежности

is, is not проверка идентичности
<<=>>= i= = = сравнения

1 побитовое ИЛИ
A побитовое исключающее ИЛИ

& побитовое И

« » побитовые сдвиги

+, - сложение и вычитание
*, /, %, // умножение, деление, остаток

+x, —x унарный плюс и смена знака

побитовое НЕ
** возведение в степень высокий

Последовательность операторов. Блок
Последовательные действия описываются следующими друг за

другом строками программы. Операторы, имеющие одинаковый от­
ступ и входящие в единую последовательность действий, образуют
блок. Блок с синтаксической точки зрения рассматривается как один
оператор.

Пример

а = 11
b = -222
print ("а =", а," Ь=", Ь)
а = а + b

12

Книги для программистов: https://t.me/booksforits

b = a-b
a = a-b
print ("a=", a, " b=", b)

Эти операторы образуют блок, меняющий местами значения а и Ь.

Ввод данных с клавиатуры. Функция input()
Когда функция input() выполняется, то поток выполнения про­

граммы останавливается в ожидании данных, которые пользователь
должен ввести с клавиатуры. После ввода данных и нажатия клавиши
Enter функция inputQ завершает свое выполнение и возвращает ре­
зультат, который представляет собой строку символов, введенных
пользователем. Если требуется получить арифметическое значение, то
необходимо изменить строковый тип на числовой с помощью функ­
ций явного указания типа int() или floatQ).

Результат, возвращаемый функцией inputQ), обычно присваивают
переменной для дальнейшего использования в программе.

Пример

a=int(input("a=")) # целое число
b=float(input("b=”)) # вещественное число
st= input () # строка

Вывод данных на экран. Функция print()
Для вывода результатов работы программы на экран компьюте­

ра используется функция print)). Самое простое обращение для выво­
да выглядит так: /?гшГ(имя[,имя]...)

Пример

а=5.56; printed)
b=float(input("b= "))
st= "Привет///"
printed, b, st)

13

Книги для программистов: https://t.me/booksforits

Форматирование вывода. Метод format()
Синтаксическая конструкция:

<спецификация>./ЬгтйД(<строка вывода>)

Возвращается строка вывода, отформатированная в соответ­
ствии со спецификацией.

Спецификаторы.
> Выравнивание:
< — выравнивание по левому краю;
> — выравнивание по правому краю;
Л — выравнивание по центру;
= — помещает результат в крайнее левое положение.
> Знаки (только для числовых значений):
+ — знак «плюс»;
----- знак «минус» (только для отрицательных значений).
> Разделители десятков (только для числовых значений):

, — в качестве разделителя тысяч;
_ — в качестве разделителя тысяч.
> Точность:
.число — количество цифр выводимых после фиксированной

точки или количество символов в строке.
> Тип форматируемого объекта:
s — строка (по умолчанию);
с — преобразует целое число в символ Unicode;
d — десятичный формат;
е — формат с плавающей точкой со строчной буквой е;
Е — формат с плавающей точкой с заглавной буквой Е;
f — формат чисел с плавающей точкой;
F— формат чисел с плавающей точкой, верхний регистр;
g — общий формат, нижний регистр;
G — общий формат, верхний регистр;
п — формат целых чисел;

14

Книги для программистов: https://t.me/booksforits

% — умножает число на 100 и использует f для вывода. В конце
ставится %.

Пример

',р)1

р = -24.5
Г = 97.1
prints'{.•+/} {:+j}'.format(p, t))
print('{:j}-, {: f}'.format(p**2, Z*3))
print('{:<5};{:<5}; {.'+/}'.forinati'left'
printi '{.’>10} '.format^ 'right'))
prznZ('{:A30} '.formatfno центру'))
prints'{: *A3 0} '.format^ '*по центру * 3)
print('{:d};{:E} '.format(Y23, -3.14e0))
T?rz«Z(24.5/97.1)
prints Ответ в процентах: {:.2%}'.format(abs(p)/t)')

Результат

-24.500000 +97.100000
600.250000; 291.300000
left; ; -24.500000

right
по центру

М® >Jc Sjc Sjc >Jc Sj4 JJQ j jg-jq-'-ppy 4» 4» Я» М» Я»

123;-3.140000E+00
0.2523171987641607

Ответ в процентах: 25.23%

Целые числа (int)
Основные операции для целых чисел:

X +y сложение
x-y вычитание

15

Книги для программистов: https://t.me/booksforits

X * у умножение
х / у деление
хН у получение целой части от деления
X % у остаток от деления
-X смена знака числа
abs(x) модуль числа
divmod(x,y) пара (х Ну, х % у)
х ** у возведение в степень
pow(x, y[,z]) ху по модулю (если модуль задан)

Над целыми числами можно производить битовые операции:
X 1 У побитовое ИЛИ
X ''у побитовое ИСКЛЮЧАЮЩЕЕ ИЛИ
X & у побитовое И
X •« п битовый сдвиг влево
X '» п битовый сдвиг вправо

инверсия битов

Пример

»> print (16«3)
128
»> print(16»2)
4

Целые числа поддерживают длинную арифметику.

Вещественные числа (float)
Для вещественных значений основные арифметические опера­

ции те же, что и для целых значений:
+ — сложение;
----- вычитание;
* — умножение;
/ — деление;

16

Книги для программистов: https://t.me/booksforits

** — возведение в степень (выполняется справа налево).
Особенности операции возведения в степень:

/?гйГ("2**3**2=",г)
г=2 1**3 12**1 9
/?гт/("2.1**3.12**1.9=",г)

Результат

2**3**2=512
2.1 **3.12** 1.9= 629.9021693067386

Арифметические значения могут быть операндами операций
сравнения:

Операция Описание

= = если значения двух операндов равны, то условие становится истин­
ным

!= •
если значения двух операндов не равны, то условие становится ис­
тинным

> если значение левого операнда больше значения правого операнда,
то условие становится истинным

< если значение левого операнда меньше значения правого операнда,
то условие становится истинным

> = если значение левого операнда больше или равно значению правого
операнда, то условие становится истинным

<= если значение левого операнда меньше или равно значению правого
операнда, то условие становится истинным

Комплексные числа (complex)
Тип данных complex относится к категории неизменяемых и

хранит пару числовых значений, одно из которых представляет дей­
ствительную часть комплексного числа, а другое — мнимую.

17

Книги для программистов: https://t.me/booksforits

Над комплексными числами определены основные арифметиче­
ские операции (+, *, /, **).

Пример

z=-2+3y; tz=10-l 1/; print(z, а)
r=z + а\ printer)
rl =z — a; print(rl)
r2=z * <2;printer!)
r$=z / a\ printer?)')
rA=z ** 2; print(rA)
r5=z ** a; printers')

Результат

Console Shell

(-2+3j) (10-llj) Q X
(8-8j)
(-12+14j)
(13+52j)
(-0.2398190045248869+0.036199095022624424j)
(-5-12j)
(2783840026905784+7109520988256958j)
> I

Над комплексными числами определены следующие операции
сравнения:

Операция Результат

х==у True если х равно у, иначе False

х !=у True если х не равно у, иначе False

х is у True если х и у это один и тот же объект, иначе False

х is not у True если х и у это не один и тот же объект, иначе False

18

Книги для программистов: https://t.me/booksforits

Модуль cmath предоставляет доступ к функциям, которые могут
выполнять математические действия над комплексными числами:

Функция Результат

cmath. exp(x) вычисляет экспоненту комплексного числа

cmath.log(x),
[основание])

вычисляет логарифм комплексного числа с указанным
основанием, если основание не указано, то возвращается
значение натурального логарифма

cmath.Iogl0(x) вычисляет десятичный логарифм комплексного числа

cmath.sqrt(x) вычисляет квадратный корень комплексного числа

cmath.sin(x) возвращает синус комплексного числа

cmath. cos(x) возвращает косинус комплексного числа

cmath. tan(x) возвращает тангенс комплексного числа

cmath. asin(x) возвращает арксинус комплексного числа

cmath.acos(x) возвращает арккосинус комплексного числа

cmath. atan(x) возвращает арктангенс комплексного числа

cmath.polar(x) возвращает полярные координаты комплексного числа

Пример

import cmath
z=-2+3j; print(z)
r=cmath.log(zy, printer)
rl=cmath.sin(z); print(r\)
r2=cmath.acos(z); print(r2)
r3=cmath.polar(z)', print(r3)

19

Книги для программистов: https://t.me/booksforits

Результат

Console Shell

(-2+3j) Q X
(1.2824746787307684+2.158798930342464j)
(-9.15449914691143-4.168906959966565j)
(2.141449111115996-1.9833870299165355j)
(3.605551275463989, 2.158798930342464)
> □

Логические значения (bool)
Логические константы:
— True — истина;
— False — ложь.
Результатом всех операций сравнения (==, !=, >, <, >=, <=) явля­

ется логическое значение.
Основные логические операции:

❖ конкатенация

A and В

Истина, если оба значения А и В истинны;
❖ дизъюнкция

A or В

Истина, если хотя бы одно из значений А или В истинно;
♦ ♦♦ инверсия (отрицание)

not А

Истина, если А ложно и наоборот.

20

Книги для программистов: https://t.me/booksforits

Пример

a=True', b=8<2; print(a,b)
printed and b)
print(not a)
printed or b)

Результат

Console Shell

True False
False
False
True

Строки (str)
Строка состоит из последовательности символов. Константы стро­

ки записываются в двойных или одинарных кавычках: "Привет!", 'Error'.
Константы символы записываются в одинарных кавычках:

Строка считывается со стандартного ввода функцией input().
Часто используемые действия со строками:

> Конкатенация (сложение)

s="Python+"
5/="Пайтон"
print(s+sf)

Результат: "Python+ Пайтон"

> Дублирование строки

5/="Привет!"
print(st*2>)

21

Книги для программистов: https://t.me/booksforits

Результат: Привет!Привет!Привет!

> Длина строки

5/="Пайтон"
print(len{st))

Результат: 6

> Срез — извлечение из данной строки одного символа или не­
которого числа символов. Есть три формы срезов. Самая простая
форма среза: взятие одного символа строки, а именно, 5[z] — срез, со­
стоящий из одного символа, который имеет номер z (нумерация начи­
нается с числа 0)

st="Ald23*%"
print(st[0]," ",sr[3]," '>Z[-2])

Результат: A 2 *

Оператор условия. Множественное ветвление

22

https://t.me/it_boooks/2

Книги для программистов: https://t.me/booksforits

Продолжение табл.

if < условие > :
< оператор >

else:
< оператор >

В язык Python встроена возможность множественного ветвления
на одном уровне вложенности, которое реализуется с помощью веток
elif (сокращение else if). В отличие от else, в заголовке elif обязательно
должно быть логическое выражение, так же как в заголовке if.

Пример оператора условия:

if а > Ь:
q = О

else:

Пример оператора множественного ветвления:

if а < О.-
s’ = -1

elif а == 0:
s = 0

else:
s = 1

23

Книги для программистов: https://t.me/booksforits

Блок-схема

Пример простейшего калькулятора:

result = "Нет такой операции"
п = 3; т=-12
ор=input) "ор= ")
if op == result = п+т
elif op == result = n-m
elif op == result = n*m
elif op == result = n/m
elif op == "div": result = m//n
elif op == "л”: result = m**n
else: print {"Error")
р/7/7/("Результат=", result)

Результаты работы калькулятора

Console Shell

op=%
Error
Результат^ Нет такой операции
I

24

Книги для программистов: https://t.me/booksforits

Console Shell

ор=л
Результат= -1728
> |

Console Shell

op=div
Результат= -4
> |

Цикл while
while — один из самых универсальных циклов в Python, поэтому

довольно медленный. Выполняет тело цикла до тех пор, пока условие
цикла истинно.

while < условие >:
< блок инструкций

Пример

1=2; 5=0; г=1
while i < 10:

.S'+=3
r+=s
print (s)
z+=2

25

Книги для программистов: https://t.me/booksforits

Блок-схема

Результат
3
6
9
12

Тело цикла выполняется четыре раза, значение переменной z,
приводящее к завершению цикла, равно 10.

Цикл for
Цикл for сложнее и менее универсален, чем цикл while, но он

выполняется гораздо быстрее. Этот цикл проходится по любому ите­
рируемому объекту (например, строке или списку) и во время каждого
прохода выполняет тело цикла.

Наиболее распространены две конструкции оператора for.
1) for <имя> in <список объектов>:

< блок инструкций >
2) for <имя> in range(<начальное значение>, <конечное зна­

чение^ <шаг>):
< блок инструкций >

Пример
Найти сумму цифр числа, заданного строкой знаков.

26

Книги для программистов: https://t.me/booksforits

ta=O
for i in "654321 ";

ta+=int(i)
printed)

Результат

21
> □

Пример

Разделить символы исходной строки последовательностью зна­
ков: пробел * пробел.

stroka = "привет"
for b in stroka:

printfb, end=' * ')

Результат

п*р*и*в*е*т*

Функция range()
Есть три способа вызова ranged):

> один аргумент, начальное значение = О

range (<конечное значение>)

Пример

for i in range(3):
print (i, end=' 9

27

Книги для программистов: https://t.me/booksforits

Результат

0 12 2-1

> два аргумента

range (<начальное значение>, <конечное значение>)

Пример

for i in range(-fi):
printfi, end=' ')

Результат

-4 -3 -2 -1 0 1 2 > |

> три аргумента

range (<начальное значение>, <конечное значение>, <шаг>)

Пример

for i in range(3, 16, 2):
q = i % 3
printff'{i} остаток {int(cf}.,r)

Блок-схема

28

Книги для программистов: https://t.me/booksforits

Результат

3 остаток О.
5 остаток 2.
7 остаток 1.
9 остаток 0.
11 остаток 2.
13 остаток 1.
15 остаток 0.

Оператор continue. Оператор break. Слово else
Оператор continue начинает следующий проход цикла, минуя

оставшееся тело цикла for или while.
Оператор break досрочно прерывает цикл.
Слово else, примененное в цикле for или while, проверяет, был

ли произведен выход из цикла инструкцией break или цикл был вы­
полнен полностью. Блок инструкций внутри else выполнится только в
том случае, если выход из цикла произошел без помощи break.

Пример
Дано натуральное число. Требуется определить, является ли

число простым.

п = intlinput{"n='f)
bol = True
for i in range (2, ri):

if n%i == 0:
если исходное число делится на какое-либо отличное от 1 и самого
себя

bol = False
останавливаем цикл если встретили делитель числа

break
if bol == True:

print('Число простое')
else:

/?г/ш('Число составное')

29

Книги для программистов: https://t.me/booksforits

Результаты

п=17
Число простое

п=1234
Число составное
> |

Пример

Дана последовательность натуральных чисел от п до т-1. Найти
сумму чисел из этой последовательности кратных 7.

п = int(input! "п='г))
т = int(input("m = "))
s=Q
for i in range(n, m):

if i % 7 != 0:
continue

print ("i=", i, end=')
s+=i

printin')
print ("Сумма чисел кратных 7=", 5)

Результат

n=57
m=96
i= 63 i= 70 i= 77 i= 84 i= 91

Сумма чисел кратных 7= 385
> |

30

Книги для программистов: https://t.me/booksforits

Пример

Дана последовательность натуральных чисел, от п до т-1. Счи­
тать сумму чисел последовательности, пока она не превышает 1000.

п = int(input("n='y)
т = int(input("m = "))
s=Q
for i in range(n, m):

s+=i
ifs>1000:
break
print ("i= ", i, end=' 9

else:
prints "Продолжаем расчет без ,s > 1 ООО ")

print(fs=", s)

Результаты

n=20
m=30
Продолжаем расчет без s>1000
s= 245

n=20
m=100
s= 1035

Функции

Функции — изолированный блок инструкций языка, обращение
к которому в процессе выполнения программы может быть много­
кратным. Предполагается, что функция в точку вызова возвращает не
только управление, но и значение.

Описание функции. Программист может определять собствен­
ные функции двумя способами: с помощью оператора def или lambda-
функции (анонимные функции).

31

Книги для программистов: https://t.me/booksforits

Функции def
Описание:

def <Имя функции> ([Параметры]):
<Блок>
[return <3начение>]

def— ключевое слово, с которого начинается заголовок функ­
ции. Имя функции может быть любым, но желательно осмысленным.
Один или несколько параметров записываются через запятую в круг­
лых скобках. Даже если параметров у функции нет, круглые скобки
указываются обязательно. Далее идет двоеточие, обозначающее окон­
чание заголовка функции (аналогично с условиями и циклами). После
заголовка с новой строки и с отступом следуют инструкции тела
функции.

Тело функции — блок, состоящий из инструкций. Заканчивается
функция инструкцией, перед которой находится меньшее количество
пробелов, и которая принадлежит блоку внешнему по отношению к
рассматриваемому.

В функции чаще всего присутствует инструкция return, которая
завершает работу функции, возвращает управление и значение в точку
вызова.

Вызов функции состоит из имени функции и списка фактиче­
ских параметров, заключенного в круглые скобки. Вызов функции
может быть операндом выражения.

Пример

def max (х, у):
z=x if х>у else у
return z

def newfunc (nf):
d=n//x

32

Книги для программистов: https://t.me/booksforits

о=п%х
return (d, о)

print(max(l, 10))
print(max("Привет! ","Hellow"))
n,m = newfunc(f22A, 48)
printl"n= ",n," m=", m)

Результат

10
Привет!
n= 25 m= 34
> |

Из результата работы программы следует, что строка Привет!
«больше» строки Hellow. Если добавить строку print (ordfTI"),
(ord("H"))), увидим коды символов ПиЯ: 1055 72, и еще учесть, что
длина строки Привет! равна 7, а длина строки Hellow — 6, то полу­
ченный ответ становится очевидным.

Функция может принимать произвольное количество аргумен­
тов или не иметь их вовсе. Так же распространены функции с произ­
вольным числом аргументов, функции с позиционными и именован­
ными аргументами, обязательными и необязательными.

Пример

def func(a, b, с=2): #с — необязательный аргумент
return (а + Ь)**с

print (funcflA, 4.2)) #с = 2
print (func(a=2, 6—0.5)) # с = 2
print (func(a=l .3,b=-0.5, c=0.25))

33

Книги для программистов: https://t.me/booksforits

Результат

28.090000000000007
2.25
0.9457416090031758

Функция может принимать переменное количество позицион­
ных аргументов, тогда в списке формальных параметров в описании
функции, перед именем формального параметра ставится «*».

Функция может принимать произвольное число именованных
аргументов, тогда перед именем ставится «**».

Пример

deffunl(*ar):
s=""
конкатенация заданного при вызове количества аргументов

for i in ar:
s+=str(i)

return s
deffun2(**kar):

return kar
printfun 1(11, "w2 ", 3.1, 'abc)) # три параметра
printfun 1(H)) # один параметр
printfun2(a=''2”, b=-2, c=5.11)) #три параметра
print(fun2(f) # без параметров
printfun2(a="Hellow''f # один параметр

Результат

llw23. labc
11
{’a': '2\ 'b': -2, ’с’: 5.11}
{}
{ ’ a': ’Hellow'}
>□

34

Книги для программистов: https://t.me/booksforits

Параметром функции может быть имя другой функции.

Пример

Составить программу табулирования заданных функций.
Табулирование функции — вычисление значений функции при

изменении аргумента от некоторого начального значения хп до неко­
торого конечного значения хк с шагом h. Последовательность значе­
ний аргумента образует арифметическую прогрессию. При задании
исходных значений необходимо, чтобы хк было больше, чем хп при
положительном шаге h. Для отрицательного шага h должно быть
справедливо соотношение хп > хк.

Построим таблицу значений функции/(х)=х*х-5*х+6.
Результатом работы является таблица значений, в каждой строке

которой сначала выводится значение аргумента, а потом значение
функции.

Программа

import math
deffun\(x): #функцияДх)

return х*х-5 *х+6
defTabf(xQ,x\,dx,fp #реализация табулирования функцииf
х=хО
while х<=х\ :
z=fix)
print("x=", х, " f=”^)
x+=dx

xn =float(input("хп="))
xk=float(input("xk= "))
h =float(input("h="))
printi "Функция x *x-5 *x+6 ")
Tabflxn,xk,h.fun 1)

35

Книги для программистов: https://t.me/booksforits

Результат

Console Shell

xn=l
xk=2
h=0.1
Функция x*x-5*x+6
x= 1.© f= 2.0
x= 1.1 f= 1.71
x= 1.20000O0000000002
x= 1.3000000000000003
x= 1.4000000000000004
x= 1.5000000000000004
x= 1.60000000O0000005
x= 1.7000000000000006
x= 1.8000000000000007
x= 1.90000O0000000008
:■ □

f= 1.4399999999999995
f= 1.1899999999999986
f= 0.9599999999999991
f= 0.75
f= 0.5599999999999987
f= 0.3899999999999988
f= 0.23999999999999844
f= 0.10999999999999943

Если внимательно посмотрим на результат, то увидим, что про­
грамма работает некорректно, так как отсутствует значение функции
при х=2. Очевидно, что это происходит из-за условия окончания цик­
ла. Запишем условие окончания цикла х < хк + малое положительное
число, например 17Г—10.

Программа

import math
def fun 1 (x): # функция Дх)

return x*x-5 *x+6
def Tabfxfxfdxff
x=x0
while x<x\ + \E-\0 # добавили IE-10

printl "x= ", x, " f= ", z)
x+=dx

xn =float(input{ "xn="))
xk=float(input("xk= "))
h =float(input("h="))
printl "Функция x*x-5 *x+6 ")
Tabf(xn,xk,hfun 1)

36

https://t.me/it_boooks/2

Книги для программистов: https://t.me/booksforits

Результат

Console Shell

xn=l
xk=2
h=0.1
Функция x*x-5*x+6
x= 1.0 f= 2.0
x= 1.1 f= 1.71
x= 1.2000000000000002
x= 1.3000000000000003
X= 1.4000000000000004
X= 1.5000000000000004
X= 1.6000000000000005
X= 1.7000000000000006
X= 1.8000000000000007
X= 1.9000000000000008
x= 2.000000000000001

f= 1.4399999999999995
f= 1.1899999999999986
f= 0.9599999999999991
f= 0.75
f= 0.5599999999999987
f= 0.3899999999999988
f= 0.23999999999999844
f= 0.10999999999999943

f= 0.0

Последняя строка появилась и в ней значение х больше 2. Дела­
ем вывод: работая с вещественными значениями надо всегда помнить,
что вещественные значения имеют ограниченную точность и имеет
место вычислительная погрешность.

Правильно работает и следующая программа:

import math
deffun\(x):

return x*x-5 *x+6
def Tabfxfxfdxfy
x=x0
while x<x\:
z=f{x)
print("x=", x, " f="f)
x+=dx

xn =float(input("xn="))
xk=float(input("xk= "))
h =float(input("h="))
print{ "Функция x*x-5 *x+6 ")
Tabfxn,xkffun 1)
print("x=", xk, " f= "fun 1 (xkf)

37

Книги для программистов: https://t.me/booksforits

Пример программы для нескольких функций
Построить таблицу значений функций.

fun 1 (х) =х *х-5 *х+6.
fun2(x)= х * sin(x) + ecos(°’7*x) — 0,5.

Программа

import math
deffunl(x):

return x*x-5 *x+6
deffun2(x):

return (x*math.sin(x)+math.exp(jnath.cos(f.'l *x))-0.5)
def Tabfxfxfdxf):

x=xO
while x<x\ + \E-\0:
z=f{x)
print("x=",x, " f=",z)
x+=dx

xn =float(input("xn="))
xk=floatfinput("xk= "))
h =float(input("h="))
print{ "")
printi "Функция x*x-5 *x+6 ")
Tabfixn,xkffun 1)
print{"")
print{ "Функция x*math.sin(x)-srmath.expfnath.cos(f.'l*x)')-Q.5 ")
Tabfxn,xkffun2}

38

Книги для программистов: https://t.me/booksforits

Результат

Console Shell

xn=0
xk=2
h=0.2

Функция x*x-5*x+6
x= 0.0 f= 6.0
x= 0.2 f= 5.04
x= 0.4 f= 4.16
x= 0.6000000000000001 f= 3.3599999999999994
x= 0.8 f= 2.64
x= 1.0 f= 2.0
X= 1.2 f= 1.4399999999999995
x= 1.4 f= 0.96
X= 1.5999999999999999 f= 0.5600000000000005
X= 1.7999999999999998 f= 0.23999999999999932
x= 1.9999999999999998 f= 8.881784197001252e-16

Функция x*math.sin(x)+math.exp(math.cos(0.7*x)}-0.5
x= 0.0 f= 2.218281828459045
x= 0.2 f= 2.231549697745057
x= 0.4 f= 2.2702217500223134
x= 0.6000000000000001 f= 2.330793805803573
X= 0.8 f= 2.4071184596461777
x= 1.0 f= 2.49012624758402
x= 1.2 f= 2.567732268010286
X= 1.4 f= 2.6250973291418633
x= 1.5999999999999999 f= 2.64533553795692
x= 1.7999999999999998 f= 2.610659429705004
X= 1.9999999999999998 f= 2.503860759931799
I

Анонимные функции. Инструкция lambda
Анонимные функции создаются с помощью инструкции lambda.

Анонимные функции не имеют имени, а содержат только выражение,
однако выполняются они быстрее. /атМя-функции, в отличие от
обычных функций, не используют инструкцию return для передачи
значения в точку вызова.

Описание:

lambda [<Параметр>[,<Параметр>]...].- <Выражение>.

У этих функций нет имени, именно поэтому их называют ано­
нимными. При вызове анонимная функция возвращает ссылку на объ­
ект-функцию. Вызывается анонимная функция указанием круглых
скобок, внутри которых указаны передаваемые параметры.

39

Книги для программистов: https://t.me/booksforits

Пример

fun=lambda х, а=-5,у=6: х*х + а*х + у
a=float(inputf'a= "))
b=float(input{"b= "))
c=float(input("c= "))
print("fun(a)=" fun(a))
prints "fun(a,b)="fun(a,b))
print(”fun(a,b,c)="fun(a,b,c))
print(^’i'*****************^
print(fun(a,by)
for x in range(0,8,2):

printf{:s} {:2f} {:.2/}'formatfx=', x/2,f='fun(x/2)))
prints '******************^
for x in range(-6,6,2):

printf{0:<3} {l.-<8} {2:<3} {3:<8} '.formatfx='pc2, f=’,fun(x/2)))

Результат

a= 1.00 Q X
b= 2.00
c= 0.10
fun(a)= 2.0
fun(a,b)= 9.0
fun(azb,c)= 3.1

9.0
x=0.00 f=6.00
x=1.00 f=2.00
x=2.00 f=0.00
x=3.00 f=0.00

x= -3.0 f= 30.0
x= -2.0 f= 20.0
x= -1.0 f= 12.0
x= 0.0 f= 6.0
x= 1.0 f= 2.0
x= 2.0 f= 0.0
> □

40

Книги для программистов: https://t.me/booksforits

Функции генераторы. Инструкция yield
Функция-генератор — функция, которая может возвращать при

каждом обращении одно значение из заданной последовательности.
Приостановить выполнение функции позволяет инструкция

yield. Она при каждом обращении (на каждой итерации) возвращает
следующее значение. Обычные функции возвращают всю последова­
тельность сразу, а функция-генератор только одно значение, что по­
вышает эффективность программы при работе с большими последова­
тельностями данных.

Пример

def range\fm,ri):
while т <= т+п:

yield т # Генерирует значение (и)
т += 1

k=int(input("к= "))
с = rangel(0, к) #с=0.0
for i in rangef[, к+2):

z=next(c)/10 # следующее значение
print(z," ", z *z*z-5 *z*z+8 *z-2.1)

Результат

k=10
0.0 -2.1
0.1 -1.34 90000000000002
0.2 -0.692
0.3 -0.12300000000000022
0.4 0.3640000000000003
0.5 0.7749999999999999
0.6 1.116
0.7 1.3929999999999998
0.8 1.612
0.9 1.7790000000000004
1.0 1.9
=■ П

41

Книги для программистов: https://t.me/booksforits

Рекурсивные функции
Рекурсия — процесс повторения инструкций самоподобным об­

разом. Рекурсивным называется любой объект, который частично
определяется через себя. В рекурсивном определении должно присут­
ствовать граничное условие, при выходе на которое дальнейшая ини­
циация рекурсивных обращений прекращается.

Рекурсивные версии большинства подпрограмм могут выпол­
няться немного медленнее, чем их итеративные эквиваленты, по­
скольку к необходимым действиям добавляются вызовы функций. Но
в большинстве случаев это не имеет значения. Много рекурсивных
вызовов в функции может привести к переполнению памяти.

Основным преимуществом применения рекурсивных функций
является более простой код программы по сравнению с итеративными
эквивалентами.

Рекурсия бывает прямая и косвенная.
Если вызов функции является инструкцией тела вызываемой

функции, то такая рекурсия называется прямой, если через другие
функции, то рекурсия называется косвенной или взаимной.

Пример (прямая рекурсия)

Вычисление факториала числа п.

deffak(n):
if п==0:

return 1
else:

return n*fak(n-V)
print(" n=",5," Факториал="^ак(5У)
printl" n=",8," Факториал="^ак(%У)

42

https://t.me/it_boooks/2

Книги для программистов: https://t.me/booksforits

Результат

n= 5 Факториал= 120
n= 8 Факториал= 40320

Пример (прямая рекурсия)

Вычисления и-го числа ряда Фибоначчи.
Если нулевой элемент последовательности равен 0, первый — 1,

а каждый последующий равен сумме двух предыдущих, то ряд Фибо­
наччи будет следующим: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...

deffibfif
if п==0 or п==\:

return п
else:

return fib(n-V)+fib(n-2)
printf' n=",5," число Фибоначчи=", fib(5-T), ' # нумерация с 19
printf «=",10," число Фибоначчи=",//6(10-1),' # нумерация с 19
printf п=",5," число Фибоначчи=",АЬ(5У# нумерация с О')
printf «=",10," число Фибоначчи=", fibfO),' # нумерация с О')

Результат

п= 5 число Фибоначчи= 3 # нумерация с 1
«=10 число Фибоначчи= 34 # нумерация с 1
п= 5 число Фибоначчи= 5 # нумерация с 0
п= 10 число Фибоначчи= 55 # нумерация с О

Пример (косвенная рекурсия)

defffi):
printff: п="," ",n,"**",end=" ")
ifn> 0: g(« - 1)

43

Книги для программистов: https://t.me/booksforits

def g(n):
print("g: n="," ",n, end=" ")
ifn > 1 2)

Л8)

Результат

f: n= 8 ** g: n= 7 & f: n= 5 ** g: n= 4 & f: n= 2 ** g: n= 1 &

Файлы. Работа с файлами

Длительное хранение данных можно осуществить двумя спосо­
бами:

> запись в файл — используется для хранения информации от­
носительно небольшого объема;

> хранение в базе данных.
Под файлом понимают способ хранения данных на внешнем

устройстве.
В Python работа с файлами осуществляется с помощью функций,

в которых запрограммированы все необходимые действия. Они позво­
ляют работать с различными устройствами: коммуникационными ка­
налами, дисками, принтерами, клавиатурой и т. д. Эти устройства
сильно отличаются друг от друга, однако файловая система преобра­
зует их в единое абстрактное логическое представление, называемое
потоком (абстрактный канал связи, создаваемый в программе для об­
мена данными). С физической точки зрения файл - именованная сово­
купность данных, находящаяся на внешнем устройстве и имеющая
определенные атрибуты (характеристики).

Файл, рассматриваемый как последовательность строк симво­
лов, называется текстовым. Его можно создавать и редактировать с
помощью любого текстового редактора.

Работа с файлами включает следующие действия:
> открытие файла;
> чтение из существующего файла или запись в файл;

44

Книги для программистов: https://t.me/booksforits

> закрытие файла.

Открытие файла
Открытие файла выполняется с помощью функции ореп().
Синтаксическая конструкция с обязательными параметрами:

о^ен(<имя файла>,<режим открытия>,<кодировка>)

Имя файла задается в виде строки знаков и может быть относи­
тельным или с указанием полного пути. Если файл находится в теку­
щем каталоге, то достаточно указать только имя файла.

Режимы открытия файла:
'г' — открытие на чтение (является значением по умолчанию);
'w' — открытие на запись, содержимое файла удаляется, если

файл не существует, то создается новый;
'Ь'— открытие в двоичном режиме;
'Г — открытие в текстовом режиме (является значением по

умолчанию);
'+'— открытие на чтение и запись.
Режимы могут быть объединены, например, 'rb' — чтение в дво­

ичном режиме (по умолчанию режим 'rf).
Параметр <кодировка> используется только при открытии для

чтения текстового файла (по умолчанию кодировка UTF-8).

Методы для работы с файлами
Метод Описание

file.closety закрывает открытый файл
file.nextQ возвращает следующую строку файла
file,read(n) чтение первых п символов файла
file.readline(n) читает одну строку с номером п
file.readlinesQ читает и возвращает список всех строк в файле
file.seek(cM^Qme[,
позиция])

устанавливает указатель в позицию, имеющую
смещение относительно позиции

fde.tellQ возвращает текущую позицию в файле
file.write^CTpOKSt) добавляет строку str в файл

45

Книги для программистов: https://t.me/booksforits

Продолжение табл.
file.w. ritelines
(последовательность)

добавляет последовательность строк в файл

Примеры

Чтение из файла test.txt, который загружен в текущий каталог, и
вывод на экран

for line in ореп("test.txt"):
print (line)

Содержимое файла test.txt
Привет!!! Молодец
12 13 14 15
-12-3 4

Результат

Console Shell

Привет!!! Молодец

12 13 14 15

-12-34

В текущей папке создать файл с именем «out.txt», содержащий
значения квадратных корней для чисел от 10 до 20. До запуска про­
граммы файла «out.txt» в каталоге нет.

Программа

/= open("out.txt","w") # Открывает файл для записи
а=9
b=2Q
р=1

46

Книги для программистов: https://t.me/booksforits

r=0.5
while a < b:

p = (a+l)**r
f.write{"%id %0.2fl«" % («+!,/?))
a += 1
print(a," ",p)

f. closet^

Результат
Вывод на экран:

10 3.1622776601683795 О х
11 3.3166247903554
12 3.4641016151377544
13 3.605551275463989
14 3.7416573867739413
15 3.872983346207417
16 4.0
17 4.123105625617661
18 4.242640687119285
19 4.358898943540674
20 4.47213595499958
> D

Файл "out.txt”

D Files й 1 й •

<< Ф main.py

В out.txt
►I

В portfoLio.csv

В test.txt

Q

out.txt

1 10 3.16
2 11 3.32
3 12 3.46
4 13 3.61
5 14 3.74
6 15 3.87
7 16 4.00
8 17 4.12
9 18 4.24

10 19 4.36
11 20 4.47
12 | 1

47

Книги для программистов: https://t.me/booksforits

Программа предназначена для формирования стоимости и печа­
ти чека покупки. Сведения о продажах читаются из файла chek.txt.
Структура записи: <Товар> <Количество> <Цена> (значения отделя­
ются друг от друга пробелом).

Содержимое файла:

О Files 0 ' В :
«go аштасн.ру

=- c.txt

chek.txt х

1 Батон 2 40.5
2 Молоко 2 49.1
3 Сахар 3 б0.1|

=- chek.txt

Программа

filename= "chek.txt”
ch = []
total = 0.0
rr=[]
print ("{(УЛ} {1:10} {2:5}".format^"Кол-во", "Цена"))
for line in open(filename):
fields= line.splitf ") # Преобразует строку в список
п =fields[(}\ # Извлекает и преобразует отдельные значения полей
s = int(fields[\])
р =float(fields[2])
print)" {0:7} {1:3} {2:11} ”format(n,s,py)
st = (n,s,p)
ch.append(sf)

print}"—Чек—")
for n, s, p in ch:

r=float(s * p)
rr.append(f)
print(n," ",r)
total += s *p

print} "Сумма= ",total)

48

Книги для программистов: https://t.me/booksforits

Результат

Товар Кол-во Цена
Батон 2 40.5
Молоко 2 49.1
Сахар 3 60.1
-------Чек ————
Батон 81.0
Молоко 98.2
Сахар 180.3
Сумма= 359.5
> □__

Исключения
Для обработки особых ситуаций (таких как деление на ноль или

попытка чтения из несуществующего файла) применяется механизм
исключений. Перехватывать исключения можно с помощью блоков
try ... except, которые имеют следующий синтаксис:

try:
<операторы> # исключения отслеживаются и обрабатываются

except <имя исключения 1>; <обработка ситуации>

except <имя исключения N>: <обработка ситуации>
else:

< обработка ситуации >
finally:

< обработка ситуации >

Эта конструкция должна содержать хотя бы один блок except, а
блоки else и finally являются необязательными. Блок else_ выполняет­
ся только если в операторах блока try не возникает исключительных
ситуаций. Если блок finally присутствует, он выполняется всегда и в
последнюю очередь.

49

Книги для программистов: https://t.me/booksforits

Пример инструкции try-except:

try:
res = int(open('a.txt').read()) / int(open('c.txt').readl))
print (res)

except lOError:
print ("Ошибка ввода-вывода")

except ZeroDivisionError:
print ("Деление на О")

except Keyboardinterrupt:
print ("Прерывание с клавиатуры")

except:
print ("Ошибка")

try:
res = int(open('a.txt').read()) /int(open('c.txt').read())
print res

except lOError:
print "Ошибка ввода-вывода"

except ZeroDivisionError:
print "Деление на 0 "

except Keyboardinterrupt:
print 'Прерывание с клавиатуры"

except:
print "Ошибка"

В этом примере берут числа из двух файлов и делят одно на дру­
гое. В результате этих действий могут возникать различные исключе­
ния, имена тех, которые из них могут быть обработаны, указываются в
инструкциях except. Последняя инструкция except в этом примере от­
слеживает все другие исключения, которые не были упомянуты ранее.

Исключения рассматриваются как тип данных в Python. Исклю­
чения необходимы для того, чтобы сообщать об ошибках, возникаю­

50

Книги для программистов: https://t.me/booksforits

щих при выполнении программы и приводящие к невозможности ее
дальнейшей корректной работы.

♦♦♦ ArithmeticError — арифметическая ошибка
> FloatingPointError — порождается при неудачном выпол­
нении операции с плавающей запятой.
> OverflowError — возникает, когда результат арифметиче­
ской операции слишком велик для представления.
> ZeroDivisionError — деление на ноль.

♦ ♦♦ MemoryError — недостаточно памяти.
❖ NameError — не найдено переменной с таким именем.
❖ RuntimeError — возникает, когда исключение не попадает ни

под одну из других категорий.
❖ ValueError — функция получает аргумент правильного типа, но

не корректного значения.

Пример (калькулятор)

try:
n=float(input(" n="f)
m=float(input(" т="))
result=0.0
for op in ["+ ", "•", "div ", "Л","/"] :

#print("n",op,"m =", " ")
if op == result = n+m
elif op == result = n-m
elif op == result = n*m
elif op == "•"• result = n/m
elif op == "div": result = n//m
elif op == "л"; result = m**n
else: raise RuntimeError
print("n ",op, "m = ", result)
print (f")

except RuntimeError:
print ("n ",op, "m = ", "Калькулятор не знает этой операции ")

51

Книги для программистов: https://t.me/booksforits

except ZeroDivisionError:
print ("Деление на 0 ")

except Keyboardinterrupt:
print ("Прерывание с клавиатуры") #<Ctrl>+<c>

except :
print ("Ошибка ввода")

Результаты

n=-5.1 Q X
m=O

n * ID = -0.0

n + m = -5.1

Деление на О
> |

n=7/23 Q. X
Ошибка ввода

n=6.78 Q. X
m=5,7

Ошибка ввода
> |

52

Книги для программистов: https://t.me/booksforits

n=7.1
m= Прерывание с клавиатуры

Q х

Вместо ввода значения переменной т, была нажата комбинация
<Ctrl>+<c>.

п

п=6.2
п=2.1
* 10 = 13.020000000000001

Q х

п + ID = 8.3

п : m = 2.9523809523809526

п div io = 2.0

п Л io = 99.48546343115241

п / ID = Калькулятор не знает этой операции
> □

Понятие модуля
Модуль оформляется в виде отдельного файла с исходным ко­

дом. В модуль включаются функции и классы, имеющие определен­
ную область действия. Например, модули, реализующие различные
математические функции, модули для работы с таймером, модули,
генерирующие псевдослучайные значения, модули для построения
графических объектов и т. п.

Подключение модуля к программе на Python осуществляется с
помощью инструкции import.

Первый вариант:

import < имя модуля >

53

Книги для программистов: https://t.me/booksforits

Пример

import math

или

import < имя модуля > as < новое имя модуля >

Пример

import math as pas

Второй вариант:

from < имя модуля > import < имена объектов модуля >

Пример

from sys import argv, environ
from string import *

С помощью первого варианта с текущей областью видимости
связывается только имя, ссылающееся на объект модуля, а при ис­
пользовании второй — указанные имена (или все имена, если приме­
нена «*») объектов модуля связываются с текущей областью видимо­
сти. При импорте можно изменить имя, с которым объект будет свя­
зан, с помощью as.

В первом случае в программе известно только имя самого моду­
ля, поэтому при обращении к функции, входящей в модуль, указыва­
ется имя, состоящее из имени модуля, точки и имени самой функции
math.smfx).

54

Книги для программистов: https://t.me/booksforits

Во втором случае имена функций используются так, как если бы
они были определены в текущем модуле, то есть достаточно указать
только имя самой функции sin(x).

Повторный импорт модуля происходит гораздо быстрее, так как
модули кэшируются интерпретатором. Загруженный модуль можно
загрузить еще раз (например, если модуль изменился на диске) с по­
мощью функции reload^)'..

Пример

import mymodule

reload(mymodule)

Генерация псевдослучайных чисел.
Модуль random

Python использует в качестве основного генератора алгоритм
вихрь Мерсённа. Вихрь Мерсенна (англ. Mersenne twister, МТ) — ге­
нератор псевдослучайных чисел (ГПСЧ), разработанный в 1997 г.
японскими учёными Макото Мацумото и Такудзи Нисимура. Вихрь
Мерсенна основывается на свойствах простых чисел Мерсенна и
обеспечивает быструю генерацию высококачественных по критерию
случайности псевдослучайных чисел. Это один из наиболее широко
протестированных генераторов случайных чисел, однако он не подхо­
дит для криптографии.

В модуль random включены следующие функции:
— random.random — возвращает псевдослучайное число от 0.0

до 1.0;
— random.uniformia, Ъ) — возвращает случайное число N с пла­

вающей точкой таким образом, чтобы а <= N <= b для а <= b и b <= N
<= а для b < а;

55

Книги для программистов: https://t.me/booksforits

— random.triangularly, b, m) — возвращает случайное число с
плавающей точкой N, так, что а <= N <= b и с указанным т между
этими границами. Границы а и b по умолчанию равны 0 и 1;

— random.randint(a, b) - возвращает случайное целое число N
так, чтобы а <= N <= Ь.

Пример

import random
x=random.randomQ)
print(" x= ”,x)
x\=random.uniform(2.5, 15.6)
print(" x\="jcV)
x2=random.triangular(1Q, 60, 35)
print(" x2=", x2)
x3=random.randint(-\W), 101)
printl" x3 = ", x3)

Результат

x= 0.6483660670221304
xl= 5.0992432635688685
x2= 37.30496848834695
x3= -74

> |

Типы коллекций

Последовательности — один из типов данных, которые исполь­
зуются в программах на Python для реализации массивов (в частности,
для моделирования векторов и матриц). К последовательностям отно­
сятся также строки знаков.

Последовательности поддерживают инструкции:
> проверки на вхождение /и;
> функцию определения размера /<?«();
> оператор извлечения срезов [];

56

Книги для программистов: https://t.me/booksforits

> возможность выполнения итераций.
К типичным последовательностям относятся: списки, кортежи,

словари.

Списки. Функция list()
Списки в Python — упорядоченные изменяемые последователь­

ности объектов произвольных типов (почти как массив, но типы могут
отличаться).

Их можно задавать с помощью литералов, записываемых в квад­
ратных скобках, или посредством списковых включений. Пустой спи­
сок создается с помощью пары пустых квадратных скобок [], а список,
состоящий из одного или более элементов, может быть создан с по­
мощью последовательности элементов, разделенных запятыми и за­
ключенных в квадратные скобки.

Пример

lst\ =[1,2, 3]
lst2 = [х**2 forx in rangeifty ifx%2 == 1]
lst3 = listfabcde”)
print(lst\)
print(lst2')
printflsty

Результат

[1,2,3]
[1,9, 25,49,81]
['a', 'b', 'c', 'd', 'e']

Функция listff — без аргументов возвращает пустой список; с
аргументом типа list возвращает копию аргумента; в случае если ар­

57

Книги для программистов: https://t.me/booksforits

гумент имеет другой тип (как в предыдущем примере str), то выпол­
няется преобразование его в объект типа list.

Взятие элемента по индексу

В языке Python нумерация элементов списка (последовательно­
сти) начинается с нуля. При попытке доступа к несуществующему
индексу возникает исключение IndexError.

Пример

z=[2, 4, -5,'"ок"]
prznt("z[0] = '>[0])
print ("z[2] = ",z[2])
print ("z[3]=",z[3])
print ("z[-2] = ",z[-2])
print {"z[-\] = ",z[-\])

Результат

z[0]= 2 Q X
z[2] = -5
z[3] = ok
z[-2]= -5
z[-l]= ok

В данном примере переменная z является списком, однако взять
элемент по индексу можно и у других типов: строк, кортежей.
В Python также поддерживаются отрицательные индексы, при этом
нумерация идёт с конца z[-l] и z [-2].

Методы списков:

Метод Описание
list.appendix) добавляет элемент в конец списка
list.extend(L) расширяет список, добавляя в конец все элементы

списка
list.insert(i, x) вставляет на z-й элемент значение х

58

Книги для программистов: https://t.me/booksforits

Продолжение табл.
list.remove(x) удаляет первый элемент в списке, имеющий значе­

ние
list.pop([i]) удаляет z-й элемент и возвращает его. Если индекс не

указан, удаляется последний элемент
list.index(x, [и[, m]]) возвращает положение первого элемента от п до т со

значением х
list.count(x) возвращает количество элементов со значением х
list.sort([key ^функция]) сортирует список на основе функции
list.rev erseQ) разворачивает список
list.copy 0 копия списка
Hst.clearQ очищает список

Пример

а = [66.25, 333,333,1,1234.5]
printf а=",а)
print(a.count(333), a.count(66.25), a.count('x'))
a.insert(2, -1)
prints" a 1 = ",a)
a.sort^)
print(" a2=",a)
a.reverseQ
print(" a3=",a)
b=a
b.reverseQ
print(" b\=",b)
b.pop(-4)
print(" b2=",b)
b.extend(["ok", "go "])
prints b3=",b)

59

Книги для программистов: https://t.me/booksforits

Результат

а= [66.25, 333, 333, 1, 1234.5] Q X
2 10
al= [66.25, 333, -1, 333, 1, 1234.5]
а2= [-1, 1, 66.25, 333, 333, 1234.5]
аЗ= [1234.5, 333, 333, 66.25, 1, -1]
Ы= [-1, 1, 66.25, 333, 333, 1234.5]
Ь2= [-1, 1, 333, 333, 1234.5]
Ь3= [-1, 1, 333, 333, 1234.5, 'ок', 'до']

>0

Функции гапде() и списки
Функция rangeQ уже упоминалась при рассмотрении цикла for.

Эта функция принимает от одного до трех аргументов. Если аргумент
всего один, она генерирует список чисел от 0 до заданного числа ми­
нус 1. Если аргументов два, то список начинается с числа, указанного
первым аргументом. Если аргументов три — третий аргумент задает
шаг списка.

Пример

z=list(range(10))
zl=list(range(4, 10))
z2=list(range(2, 10, 3))
print ("z=",z)
print ("zl = ",zl)
print ("z2=",z2)

Результат

z= [О, 1, 2, 3, 4, 5, 6, 7, 8, 9] Q X
zl= [4, 5, 6, 7, 8, 9]
z2= [2, 5, 8]
> □

60

Книги для программистов: https://t.me/booksforits

Кортежи. Функция tuple()
Кортеж представляет собой неизменяемый список. Используется

для представления константной последовательности (разнородных)
объектов. Литерал кортежа обычно записывается в круглых скобках,
но можно, если не возникает неоднозначности, писать и без них.

Преимущества кортежей:
> являясь константной последовательностью, они защищены от

случайных изменений (защита от «дурака»);
> для размещения кортежей в памяти требуется меньше места,

чем для списков.

Пример

а = (1,-2, 3,^,5, -6, 7,-8,-9, 0)
6 = [1,-2, 3,^1, 5,-6, 7,-8,-9, 0]
printf Для а=", а.__sizeof ())
print!"Для b=", Ь.__sizeof ())

Результат

Для а= 104
Для Ь= 120

Создание кортежей:
> создать пустой кортеж можно с помощью функции tuple!)',
> создать кортеж можно с помощью круглых скобок и обяза­

тельной запятой;
> создать кортеж можно с помощью с помощью функции

йф/е(аргумент).
Пример

а = tuple!) # функцией tupleO
al = ('.v',) # запятая обязательно!

61

Книги для программистов: https://t.me/booksforits

al = tup!e('Свобода — это осознанная необходимость!')
print("a= ",а)
print("a\ = ",al)
print("al= ",a2)

Результат

Доступ к элементам кортежа осуществляется так же, как к эле­
ментам списка, — через указание индексов и срезов.

Пример

а = (1,2, 3,4, 5)
printf а[0]=",а[0])
prints а[1:3]=",41:3])

Результат

а[0]= 1
а[1:3]= (2, 3)

Работа с кортежами во многом совпадает с работой со списками.
В частности, определены все операции над списками, не изменяющие
список (сложение, умножение на число, методы indexQ и country).

С помощью очень простой инструкции можно поменять кортежи
местами.

62

Книги для программистов: https://t.me/booksforits

Пример

а = tuple!" Good morning!”)
Z>=(10, 20, 30, 40,-50,-70)
print ("Исходные значения a=", a)
print (" b=",b)
print!"Размер a=", a.__sizeof ())
print{" Размер b=", b.__sizeof ())
a,b = b,a
print ('После перестановки a=", a)
printf b=",b)
print!" Размер a=", a.__sizeof ())
print!" Размер b=", b.__sizeof ())

Результат
Исходные значения a= ('G', 'o', 'o', 'd','','m', 'o', 'r', 'n', 'i', 'n', 'g','!')

b=(10, 20, 30, 40, -50,-70)
Размер a= 128
Размер b = 72
После перестановки a= (10, 20, 30, 40, -50, -70)

b= ('G', 'o', 'o', 'd','','m', 'o', 'r', 'n', 'i', 'n', 'g','!')
Размер a= 72
Размер b= 128

Удалить отдельные элементы из кортежа невозможно, но можно
удалить кортеж целиком с помощью инструкции del.

Пример

Л=(10, 20, 30, 40,-50,-70)
print!" b=",b)
del b

63

Книги для программистов: https://t.me/booksforits

В Python реализована возможность взаимного преобразования
списков и кортежей.

Пример

1st = [1,2, 3,4, 5]
print(type(lst)}
printf " lst= ",lst)
tpl = tuple(lst)
print(type(tpr))
print(" tpl= ",tpl)

Результат

<class 'list'> Q. X
lst= [1, 2, 3, 4, 5]

<class 'tuple’>
tpl= (1, 2, 3, 4, 5)

> □

Кортежи могут содержать списки. Список изменяем, кортеж нет.
Это правило действует и при вложении списков. Элементы вложен­
ных списков можно изменять.

Пример

п = (-3.5, "1,5", ["spicok", 1, "а"])
print("l. п=",п)
н[2][2] = "new"
print("2. n=",ri)

Результат

1. n= (-3.5, ’1,5’, [’spicok’, 1, ’a’]) C
2. n= (-3.5, ’1,5’, [’spicok’, 1, ’new’])

64

Книги для программистов: https://t.me/booksforits

Словари. Функция dict()
Словари — неупорядоченные коллекции произвольных объек­

тов с доступом по ключу. Их иногда ещё называют ассоциативными
массивами или хеш-таблицами.

Чтобы работать со словарём, его нужно создать. Сделать это
можно несколькими способами:

> с помощью литерала;
> с помощью функции dictif
> с помощью метода fromkeys();
> с помощью генераторов словарей.
Пример

d={}
printf d\=",d)
d = {'dict': 1, 'dictionary': 2}
print(" dl=",d)
d = dict([(\,\\ (2,4)])
print(" d3=",d)
d = dict.fromkeys(['a', 'Z?'])
prints " d4=",d)
d = {a: a ** 2 for a in range(J)}
print f d5=",d)

Результат

dl=
d2=
d3=
d4=

36?

>D

{} Q x
{ ’diet1: 1, 1dictionary1: 2}
{1: 1, 2: 4}
{’a1: None, 'b': None}
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6:

65

Книги для программистов: https://t.me/booksforits

Присвоение по новому ключу расширяет словарь, присвоение по
существующему ключу изменяет значение с этим ключом, а попытка
извлечения несуществующего ключа порождает исключение.

Пример

d = {1:2,2: 4,3:9}
print("d[\]= ",42])
44] =^1 **2
printf d=",d)
s={'a':"qw", 'b':"rt"}
print(" s=",s)
s['b']="NNN"
print(" s=", s)

Результат

d[l]= 4 Q X
d= {1: 2, 2: 4, 3: 9, 4: -16}
s= {'a': ’qw’z 'b': ’rt1}
s= {'a': ’qw’, 'b1: ’NNN’}

=■ □

Методы словарей:
Метод Описание

diet, clear]] очищает словарь
diet, copy () возвращает копию словаря
dictfromkeys(seq[, value]) создает словарь с ключами из seq и значени­

ем value (по умолчанию None)
dict.get(key[, default]) возвращает значение ключа
diet, items]) возвращает пары (ключ, значение)
diet.keys]) возвращает ключи в словаре
dict.pop(key[, default]) удаляет ключ и возвращает значение
dict.popitemf) удаляет и возвращает пару (ключ, значение)
dict.setdefault(key[, default]) возвращает значение ключа

66

Книги для программистов: https://t.me/booksforits

Продолжение табл.
diet, update^ [other]) обновляет словарь, добавляя пары (ключ,

значение) из other. Существующие ключи
перезаписываются

dict.valuesQ) возвращает значения в словаре

Пример

z={'a'.123,'Z>'.-45}
print(" z= ",z)
sil = input('ссылка: 3
name = input('название: 9
z.update([(sil, name)])
print(" zl = ",z)
t=z.items()
print(" z2=",t)
z.pop('b')
prints " z3=",z)
p={'V: 555,'2':999}
z.update(p)
print(" z4=",z)

Результат

z= {'a’: 123, 'b': 45} Q X
ссылка: uu
название: Привет’
zl= {'a1: 123, 'b': 45, ’uu': 'Привет!'}
z2= dictiteins ([('a', 123), ('b', 45), ('uu',
' Цривет! ')])
z3= {'a': 123, 'uu': 'Привет!'}
z4= {'a': 123, 'uu': 'Привет!', 'I1: 555, '2'

: 999}

67

Книги для программистов: https://t.me/booksforits

Примеры решения задач
для освоения основных инструкций Python

Линейные программы

Задача 1
Вычислить значения Y и F для заданных значений х, а, Ь.

Y — (% — а) • arcctg(a + х) — Vl* + а1 + * ' 1п(а + х)

F = у/~Ь~+1с~+~а^~х^ — е~а+х + а ■ х ■ In (х + а)

а = 2, b = 0,5, при х = 3 и х = 1,5.

Решение задачи

Формализация задачи
Дано: х, а, Ь.
Найти: У и К
Программа

import math
x=float(input(" х="))
а=2~, 6=0.5
y=(x-a)/maZ/z.ata«(l/(a+x))-maZ/z.ex/?(l -0/3 *math.log(abs(x+ayg
+х *math.log(g +х)
F=math .sqrt(a *x *x+b+x)-math.exp(-a +x)+a *x+math.log(a +x)
print (" У=",У)
print (" F=",F)

Результат
для x = 3
x = 3
Y= 8.184307869995674
F= 9.527965331722907,

длях = 1,5

68

Книги для программистов: https://t.me/booksforits

х = 1.5
Y=-1.4357745845414875
F= 6.195742065579127

Задача 2
Смешаны И литр воды температуры Л с F2 литрами воды тем­

пературы 72. Написать программу вычисления объема и температуры
воды после смешения.

Решение задачи

Формализация задачи
Дано: И, Л, V2, Т2.
Найти: V и Т.
Программа

V\=float(input(" И = "))
T\=float(input(” Л = "))
V2=float(input(" К2="))
T2=float(input{" Т2="У)
V=V\ + V2
Г=(И*Л + Р2*72)/К
print ("—Результат— ")
print ('{.-5} {.-.2/} '.format(''V=",V))
print ('{лу} {-’.2/}',format(”T=",Т))

Результат

V1=1O Q X
Tl=70.9
V2=1.5
Т2=12.5

-----Результаты-----
V=11.50
Т=63.28
> |

69

Книги для программистов: https://t.me/booksforits

Ветвления

Задача 3
Заданы три целых числа а, b и с. Найти наибольшее из них крат­

ное трем. Если среди а, b и с нет значений кратных трем, то вывести
NO и найти минимальное среди значений а + Ь, й + с и а + с.

Решение задачи

Формализация задачи
Дано: а, b и с.
Найти: т.
Программа

a=int(input(" а="У)
b=int(input(" Ь='У)
c=int(input(" с= "))
т-0;
Ы=Тгие
l=la=lb=lc=0
if а%3==0:1а=\
ifb°%3==0: lb=\
ifc%3==0: lc=\
ifla+lb+lc>=\:
ifla==\:
if bl: m=a; bl=False

iflb==\:
ifbl:
m=b',
bl=False

ifb>m: m=b
iflc==\:

ifbl: m=c;
if c>m: m=c

else:
70

Книги для программистов: https://t.me/booksforits

/=1
m=a+b
ifb+c<m: m=b+c
if a+c<m: m=a+c

print ("•—Результат—")
ifl==l: print ("No”)
print ('{:.2f}'.format(m))

Результаты

Выводит максимальное среди кратных трем.
Кратных значений два — а и с:

а=21 Q х
Ь=161
с=333
-- Результаты---
333.00
3- I

Кратных значений два — а и Ь:

а=-15 Q X
Ь=33
с=62
-- Результаты---
33.00
3- I

Кратных значений три — а, b и с:

а=-12 Q х
Ь=-45
с=-3
-- Результаты---
-3.00
з- I

71

Книги для программистов: https://t.me/booksforits

Значений кратных трем нет, выводит минимальное среди значе­
ний а + b, b + с и а + с:

а=55 Q X
Ь=-100
с=32

---Результаты---
No
-68.00
> |

Циклы

Задача 4
Построить таблицу значений альтернативно заданной функции

Ж:
Ijvd^d
—-р при d < О

при d = О

arctg
L -— при d > О
d

d изменяется от начального значения dn до конечного dk с шагом dh.
Значения b и с заданы.

Решение задачи

Формализация задачи
Дано: b = 1.7, с = 0.4, dn, dk, dh.
Найти: f.

72

Книги для программистов: https://t.me/booksforits

Блок-схема

На первый взгляд кажется, что блок-схема абсолютно правиль­
ная. Однако написав программу и выполнив расчет, например, при
следующих исходных данных: dn = -1, dk = 2, dh = 0.2, увидим не­
верный результат для значения 0. Эта ситуация возникает из-за того,
что количество знаков во внутреннем представлении вещественных
чисел ограничено и присутствует вычислительная ошибка (было рас­
смотрено в примере табулирования функции). Правильно эта про­
грамма работает только для целых значений аргумента функции. Один
из возможных вариантов решения проблемы реализован в тексте сле­
дующей программы.

Программа

import (inputC dn="))
dk=float(input(" dk= "))

73

Книги для программистов: https://t.me/booksforits

dh =float(input(" dh='f)
d=dn', b=\.T, c=0.4
print ("■—Результат—")
while d<dk+dh *0.1:
if d<-QA *dh: f=math.log(-d)/(2*math.sqrt{-d)}
else:
if((d>-0A*dh) and (d<0A *dh)): f=-l/(b+c)
else: f=math.atan(\/(b+cf/math.sqrt(d)/math.sqrt(d)

print ('{0: 2f} {1: 0.3}formated/))
d+=dh

Результат

dn=-l
dk=2
dh=0.2

—Результаты—
-1.00 0.0
-0.80 -0.125
-0.60 -0.33
-0.40 -0.724
-0.20 -1.8
-0.00 -0.476
0.20 2.22
0.40 1.11
0.60 0.741
0.80 0.556
1.00 0.444
1.20 0.37
1.40 0.317
1.60 0.278
1.80 0.247
2.00 0.222

Задача 5
Для x, изменяющегося в интервале от хО до хк с шагом h, вычис­

лить значения бесконечной суммы:

п=0 (2«)!

с точностью е=0.00001 и функции y(x) = cos(V2x).

74

Книги для программистов: https://t.me/booksforits

Решение задачи

Формализация задачи
Дано: хО, хк, h.
Найти: S, у.
Данную задачу решаем с использованием рекуррентной форму­

лы для члена ряда S.
Вывод рекуррентной формулы для расчета текущего члена ряда.
Формула общего члена ряда

-1£-(2-х)£
(2-0!

—1°-(2-х)°
1-0 U°~ (2-0)! “ 1

-1г-(_2-хУ
1 = 1 Ц1= (2-1)! =~*

— 1п-(2-х)п
1 ~ П Un~ (2-и)!

—ln+1 ■ (2 • x)n+1 -ln+1 • (2-x)n+1
t - и + 1 un+1 - (2.(n + 1)), - (2-П + 2)!

Найдем отношение
un+1 —ln+1 ■ (2 ■ x)n+1 ■ (2 • и)! 2-x

гЦ~ ~ (2 -n + 2)! ■ -ln • (2 ■ x)n “ “ (2 ■ n + 1) ■ (2 ■ n + 2) “
x

(n + 1) • (2 • n + 1)
Выразим un+1 и получим рекуррентную формулу

Un+1 = ~ (и + 1) ■ (2 ■ n + 1) ’ Un

Эта формула позволяет вычислить любой текущий член ряда кро­
ме и0.

75

Книги для программистов: https://t.me/booksforits

Блок-схема

Программа

import math
хО =float(input(" хО="))
xk=float(input{" хк= "))
h =float(input(" h="))
x=xO; e=le-5
print ("■—Результат—")
print (" x s y")
while x<xk+h *0.1:
5=0; и=0; w=l
y=math.cos(math.sqrt(2 *x))
while abs(u)>e:
s+=u

76

Книги для программистов: https://t.me/booksforits

и *=-х/((п+1) *(2 *п+1))
и+=1

print ('{0: .2/} {1: 0.5f} {2: 0.5f} '.format(x,s,yy)
x+=h

Результат

хО=О Q X
хк=2
h=0.2
---Результаты---
X S У
0.00 1.00000 1.00000
0.20 0.80658 0.80658
0.40 0.62597 0.62597
0.60 0.45765 0.45765
0.80 0.30114 0.30114
1.00 0.15595 0.15594
1.20 0.02160 0.02160
1.40 -0.10235 -0.10234
1.60 -0.21634 -0.21633
1.80 -0.32080 -0.32080
2.00

> |
-0.41616 -0.41615

Значения s и у должны быть приблизительно одинаковыми в
данном случае с точностью 0.00001.

Последовательности
(задачи с векторами и матрицами)

Задача 6
Для вектора а размерностью п вычислить вектор b по формуле:

i
bL = ^aJ

J=1
Найти максимальный элемент вектора Ь.
Векторы в программе моделируем списками.

77

Книги для программистов: https://t.me/booksforits

Решение задачи

Формализация задачи
Дано: п, а.
Найти: b и mb.

Программа

import random
n=int(input(" п='У)
a=[random.uniform(-A9, 51) for i in range(0,n)]
print (" Массив a:")
for x in a:

print ('{Q:.2f} 'format(x),end=' 3
printf ")
x=0
M]
for i in range (0,и):

x+=zz[z]
b.appendix) # добавляем новый элемент в список

print ("—Результат—")
print (" Массив b: '3
for х in b:

print ('{О/.2/} 'format(x),end=' 3
print)” '3
mb=max(b)
print ("max b= {0:.2/} "formatfnb))

Результат

n=7 Q X
Массив a:
27.33 -24.23 49.29 -12.11 -42.27 -40.36 22.02
---Результаты---
Массив b:
27.33 3.10 52.39 40.28 -1.99 -42.36 -20.34
max b= 52.39
> I

78

Книги для программистов: https://t.me/booksforits

Массив а заполняем псевдослучайными значениями, лежащими
в пределах от -49 до 51.

Задача 7
Вычислить количество положительных элементов квадратной

матрицы, расположенных по ее периметру и на диагоналях.

Матрица из N строк и N столбцов

N- нечетное N - четное

Векторы и матрицы в программе моделируем списками.

Решение задачи

Формализация задачи
Дано: п, массив ап*п
Найти: к.
Программа

import random
n=int(input(" п="))
«=[]
for i in range(0, ri):

x=[random.randint (-49, 51) for j in ranged,ri)\
a.appendix)

printi" Массив а ")
for i in rangetfgri):

79

Книги для программистов: https://t.me/booksforits

for j in range(O,ri):
ifj<n-l:print ('{.'4}' format («[/][/]), end=' 9
else: print ('{: 4}' format (zz[z][/]))

k=Q
for i in range(f),n):

z/o[0][i]>0: £+=l
z/’zz[zz-l][z]>0: fc+=l

for i in range(l ,n-T):
z/a[z][0]>0; k+=l
z/’zz[z][zz-l]>0: k+=\

for i in range{\,n-l):
If a[z][z]>0; k+=\
if a[i][n-2-i+l]>0: k+=l

if(n%2==l) and (a[n//2][n//2]): k-=l
printl" k= ",k)

Результаты

n=7 Q x
Массив a
51 -32 -35 11 -31 -22 26

-36 20 27 35 -1 42 33
-19 -16 30 -15 -30 -12 2
-4 -3 -2 23 45 11 2
30 -34 18 -18 0 -11 -14
34 -45 45 -39 -20 51 42

-10 -11 27 -5 14 -45 36
k== 18

:■ 1

n=6 Q X
Массив a

k= 17

48 -3 -34 -48 17 30
28 36 -29 -18 -27 10
2 13 -45 -45 -36 28

46 18 12 41 -45 -29
-31 17 42 23 49 4
-43 50 -11 44 -43 28

> |

80

Книги для программистов: https://t.me/booksforits

n=ll Q X
Массив a
-15 3 13 31 -26 16 24 12 25 25 -5
11 -8 37 -43 9 6 -35 30 -6 -26 8

-23 19 32 -18 45 -23 16 17 -17 -25 32
-25 -14 -14 39 10 3 -12 42 37 44 13
-35 -17 51 -15 -24 -22 -46 -40 48 -20 27
25 -18 -36 35 -5 -25 31 46 26 46 51

-45 -41 44 -28 11 -9 -13 -7 10 -35 11
43 16 5 17 -4 33 30 -20 34 10 -38
46 -19 34 -48 30 48 19 3 19 -18 49
42 17 0 -14 -46 11 -32 20 43 9 -35

-45 39 40 -21 4 -43 33 35 -38 -15 15
k= 34

> |_____

Строки

Задача 8
Дана строка знаков, содержащая текст из слов, разделенных од­

ним пробелом, и целое число т. Разбить исходный текст на строки
длиной т, переносы слов запрещены, до требуемой длины результи­
рующие строки дополняются символами

Решение задачи

Формализация задачи
Дано: 5 — строка знаков, длиной не более 255 символов, т —

длина результирующих строк, т должно быть больше самого длинно­
го слова в заданной строке.

Найти: строки заданной длины.
Программа

st=input("st=”)
m=int(input{ "т="))
sp=st.splitQ)
print (" Результат")
stroki=[]
for s in sp:

l=len(s)

81

Книги для программистов: https://t.me/booksforits

for j in range(O,m -1):
5+=-'

stroki.append(s)
print (s)

#print (stroki)

Результат

st=Ba6o4Ka Лимонница, Ax Какая Модница! Q X
m=15
['Бабочка1, 'Лимонница,', 'Ax', 'Какая', 'Модница!']

Результаты
Бабочка--------------
Лимонница,--------
Ах-----------------------
Какая------------------
Модница!------------
['Бабочка-------------- ', 'Лимонница,--------- ', 'Ах------------------------
'Какая------------------', 'Модница!------------- ']

I
Задача 9

Табулирование функции /= 1+х с использованием цикла for и
строк знаков.

Решение задачи

Формализация задачи
Дано: хО, хк, h в виде строк
Найти: f как вещественные значения.
Программа

import math
sxti=input(" х0=")
sxk=input(" хк=,r)
sh= inputf h=")
/»1=[]; p2=[];/>3=[]
p3 =sh partition(')
p2 =sxk.partition(')
p 1 =sxft.partition(')

82

Книги для программистов: https://t.me/booksforits

Zl=Zew(pl[2])
Z2=Zew(p2[2])
Z3=Ze«(p3[2])
/r=max(/l,/2,/3)
if IX ==0: xO=int(p 1 [0]) *(10 **/r)
else: x0=int(p 1 [0]) *(10 **lr)+int(p 1 [2]) * 10 **(/r-/l)
ifl2==Q: xk=int(p2[0])*W**lr
else: xk=int(p2[0]) *10 **lr+int(p2[2])*10 **(/r-/2)
ifl3==Q: h=int(p3[0])*\0**lr
else: h =int(p3[0]) *10 **lr+int(p3 [2]) * 10 **(/r-/3)
print ("■—Результат—")
for i in range(xO,xk,h):

x=z*10**(-/r)
/=l+x
print (x," ",f)

x=float(sxk)
f=l+x
print (x," ",f)

Результаты
x0=-2
xk=2
h=0.2f5

---- Результаты----
-2.0 -1.0
-1.75 -0.75
-1.5 -0.5
-1.25 -0.25
-1.0 0.0
-0.75 0.25
-0.5 0.5
-0.25 6.75
0.0 1.0
0.25 1.25
0.5 1.5
0.75 1.75
1.0 2.0
1.25 2.25
1.5 2.5
1.75 2.75
2.0 2.0

=J__

83

Книги для программистов: https://t.me/booksforits

x0=-3.55 Q. X

xk=3

h=0.5

—Результаты—

-2.45 -1.4500000000000002

-1.95 -0.95

-1.45 -0.44999999999999996

-0.9500000000000001 0.04999999999999993

-0.45 0.55

0.05 1.05

0.55 1.55

1.05 2.05

1.55 2.55

2.05 3.05

2.5500000000000003 3.5500000000000003

3.0 4.0

>1

Функции

Задача 10
Даны натуральные числа а, Ь, с. Найти NOD (а, Ь, с) (наиболь­

ший общий делитель). Нахождение наибольшего общего делителя
двух чисел оформить как функцию.

Решение задачи

Формализация задачи
Дано: а, Ь, с.
Найти: наибольший общий делитель а, Ь, с.
Программа

defNODlij):
a,b=ij
while a!=b:
if a>b: a=a-b
else: b=b-a

return a
a=int(input("a="f
b=int(input("Ь='У)
c=int(input("c= "))
print (" NOD(a,b,c)=", NOD(NOD(a,b),cy) # рекурсия

84

Книги для программистов: https://t.me/booksforits

Результаты

а=121
ь=зз
с=77
NOD(a,b,c)= 11

4]___________

а=155
Ь=62
с=93
NOD(a,b,c)= 31

:■ I

Задача 11
Написать программу, содержащую функцию для чтения с клави­

атуры и вывода на экран значений элементов вектора и матрицы.

Решение задачи

Программа

def vvod (п, a,b):
n=int(input("п="))
о = [[0] *п for z range(n)\
Z>=[0 for i in range(n)\
for i in range(Q,ri):
for j in range (0,«):

print("a[{0:2}, {1:2}]="format(if),end=' 3
a[z] [/'] =float(input(f)

print{ "b\{0:2}]=".format(f),end=' 3
Z>[z] =float(input(f)

return n, a,b

«=[[]]
M]
n=0

85

Книги для программистов: https://t.me/booksforits

n,a,b=vvod (n, a, b)
print (n)
printed)
print (Z>)

Результат

n=2
a[0, 0]= 11
a[0, 1]= 12
b[0]= 321
a[1,0]= 21
a[1, 1]= 22
b[l]=-98
2
[[11.0, 12.0], [21.0, 22.0]]
[321.0,-98.0]

Работа с файлами Excel.
Модуль pandas. DataFrame

Для чтения и записи файлов Excel можно использовать различ­
ные возможности Python. Рассмотрим, как это делается с помощью
модулей pandas и объектов DataFrame. Более подробное описание
приведено по ссылке: https://pythonru.com/uroki/chtenie-i-zapis-fajlov-
excel-xlsx-v-python.

Задача 12
Создать файл tab.xlsx с результатом табулирования функции:
f(x)=(x-aymath.atan(f/{a+xj)-math.exp(f/?>*math.log{abs(x+ayj)

+x*math.log(a+x) от хп до хк с шагом h.
Программа

import pandas as pd
import math
xn =float(input{ "xn="))

86

Книги для программистов: https://t.me/booksforits

https://pythonru.com/uroki/chtenie-i-zapis-fajlov-excel-xlsx-v-python

xk=float(input("xk= "))
h =float(input{ "h="))
a =float(input("a = "))
x=xn
ax=[]
bf=[]
while x<=xk :

ax.appendix)
z=(x-a)/math.atanl\/(a+x))-math.exp(\/3 *math.log(abs(x+a)))

+x *math.log(a +x)
bf.append(z)
x+=h

df = pd.DataFramel\ 'x': [x for x in ax\,'f(x)':[fforf in Z>/]})
print (df)
df.to excell'tab.xlsxsheet_name= 'Табулированиеindex=False)

Результат
Вывод на экран

xk=l
h=0.2
a=1.5

x f(x)
0 -1.000000e+00 -2.358606
1 -8.000000e-01 -2.998222
2 -6.000000e-01 -3.408296
3 -4.000000e-01 -3.645575
4 -2.000000e-01 -3.736532
5 -5.551115e-17 -3.695723
6 2.000000e-01 -3.532235
7 4.000000e-01 -3.252306
8 6.000000e-01 -2.860532
9 8.000000e-01 -2.360466
10 1.000000e+00 -1.754957

_____a___

Файл tab.xlsx
Файл tab.xlsx предварительно с помощью команды Download

87

Книги для программистов: https://t.me/booksforits

В tab.xlsx

Rename

Pacl Open tab

eg Copy Link

** Duplicate

Download

Delete

Необходимо загрузить из текущего каталога в папку Загрузки и
только после копировать в другую папку и/или открывать для даль­
нейшей работы.

Результат представлен в таблице Excel.

Готово s н И И------------------1-------+ 100%

88

Книги для программистов: https://t.me/booksforits

Задача 13
Дана таблица, содержащая медицинские данные об учащихся.

№ Ф. И. О. Рост, см Вес, кг
Идеальный

вес, кг
Группа

здоровья

1 Петров А. И. 170 55
2 Иванов Р. С. 168 67
3 Кузнецов В. Ю. 174 63
4 Сидоров Л. И. 172 57
5 Коромыслов М. В. 181 90
6 Чернов П. А. 173 68
7 Кудрявцев Н. О. 174 59
8 Покатин Р. В. 178 64
9 Бакурев И. И. 180 71
10 Семенов Л. П 176 91

Заполните столбцы «Идеальный вес» и «Группа здоровья».
Идеальный вес = Рост - 110.
Данные о группе здоровья представьте римскими цифрами:
I группа — (Вес - Идеальный вес) / Вес < -0.10;
II группа — (Вес - Идеальный вес) / Вес <0.1;
III группа — (Вес - Идеальный вес) / Вес >0.1.

Программа

import pandas as pd
tabs = pd.read_excel ('Сведения.x/sx')
print (tabs)
k=len(tabs .index)
print) "")
for i in range (1,£):

tabs.loc(i,'Идеальный вес,кг']=Щ/>5./ос[/,'Рост,см']-110
u=(tabs.loc[i,'Вес,Kr']-tabs.loc[i,Идеальный вес,кг'])/ tabs.loc[i, 'Вес,кг"]

89

Книги для программистов: https://t.me/booksforits

if w<-0.1:
tabs.loc[i.'Vруппа здоровья'] = "Г

else:
if w<0.1:

tabs.loc[i,'V руппа здоровья'] = "II"
else: tabs.loc[i,Труппа здоровья'] = "Ш"

print (tabs)

Результат
Сначала выводится исходная таблица с незаполненными столб­

цами «Идеальный вес», кг, и «Группа здоровья».

№ Ф.И.О. Рост,см Вес,кг Идеальный вес,кг Группа здоровья
0 NaN NaN NaN NaN NaN NaN
1 1.0 Петров А.И. 170.0 55.0 NaN NaN
2 2.0 Иванов Р.С. 168.0 67.0 NaN NaN
3 3.0 Кузнецов В.Ю. 174.0 63.0 NaN NaN
4 4.0 Сидоров Л.И. 172.0 57.0 NaN NaN
5 5.0 Коромэ1слов М.В. 181.0 90.0 NaN NaN
б 6.0 Чернов П.А. 173.0 68.0 NaN NaN
7 7.0 Кудрявцев Н.О. 174.0 59.0 NaN NaN
8 8.0 Покатин Р.В. 178.0 64.0 NaN NaN
9 9.0 Бакурев И.И. 180.0 71.0 NaN NaN
10 10.0 Семенов Л.П 176.0 91.0 NaN NaN

IP Ф.И.О. Рост,см Вес,кг Идеальный вес,кг Группа здоровья
0 NaN NaN NaN NaN NaN NaN
1 1.0 Петров А.И. 170.0 55.0 60.0 II
2 2.0 Иванов Р.С. 168.0 67.0 58.0 III
3 3.0 Кузнецов В.Ю. 174.0 63.0 64.0 II
4 4.0 Сидоров Л.И. 172.0 57.0 62.0 II
5 5.0 Коронелов М.В. 181.0 90.0 71.0 III
б 6.0 Чернов П.А. 173.0 68.0 63.0 II
7 7.0 Кудрявцев Н.О. 174.0 59.0 64.0 II
8 8.0 Покатин Р.В. 178.0 64.0 68.0 II
9 9.0 Бакурев И.И. 180.0 71.0 70.0 II
10 10.0 Семенов Л.П 176.0 91.0 66.0 III

1

90

Книги для программистов: https://t.me/booksforits

Примеры решения задач
вычислительной математики

Одним из методов научного познания является моделирование.
Моделирование — процесс изучения объекта путем построения и ис­
следования его модели, осуществляемый с определенной целью: заме­
нить эксперимент с оригиналом экспериментом на модели.

Появление и непрерывное совершенствование быстродейству­
ющих вычислительных средств открыло невиданные ранее возможно­
сти для применения математических методов в науке и других сферах
деятельности.

Рассмотрим некоторые методы вычислительной математики и
их реализацию на Python для задач математического моделирования.

Приближенные методы решения уравнения f(x) = О

Постановка задачи

Дано уравнение вида/(х) = 0. Найти один из корней этого урав­
нения с точностью £ > 0.

Этапы решения задачи

Приближенное решение уравнения fix) = 0 включает следующие
этапы.

> Отделение корней и выбор отрезка, на котором локализован
искомый корень. Производится исследование функции fix) для нахож­
дения отрезков, содержащих по одному корню.

> Уточнение корней. По выбранному алгоритму последова­
тельно сужается отрезок, содержащий корень, до такой степени, пока
не станет выполнять условие точности е > 0.

Локализацию корней удобно выполнять в электронных табли­
цах.

Строим график функции/1(х)=2*х*х*х*х-3*х*х*х-4*х*х+5*х-6.

91

Книги для программистов: https://t.me/booksforits

Выбираем отрезок локализации корня [2;3].
Строим таблицу значений и график функции

у2(х)= exp(cos(2*x))-3*sin(0.5*x)+0.4.

Выбираем отрезок с первым четко видимым на рисунке корнем
[0;1].

Рассмотрим методы уточнения корней.

Метод половинного деления
Алгоритм метода

1. Ввод исходных данных: а, Ь, е.
2. Расчет середины текущего отрезка с=(а+Ь)/2.

92

Книги для программистов: https://t.me/booksforits

3. Проверка условия fia)*fic)<0. Если условие выполняется, то
Ь=с, иначе а=с.

4. Проверка условия (Ь-а)<= е. Если условие выполняется, то
переход к пункту 5, иначе переход к пункту 2.

5. Расчет закончен. Корень х*=(а+Ь)/2.

Функция метода

def dell (a,b,ef):
п=0
iffa)*fb)<=0:
while abs(b - a)>e:
n+=l
if n > 100:
printf Корень с заданной точностью не найден! ")
break

else:
с = (a + b) *0.5

if fa) *fc) <0: b = c
else: a = c

return (a + b) *0.5
else:
print ("Метод половинного деления: на заданном отрезке корней

нет")
return "*"

Метод касательных (метод Ньютона)
Пусть корень уравнения fix) = 0 локализован на отрезке [а;Ь].

Функция fx) на отрезке \сг,Ь\ должна быть дважды дифференцируема.
Требуется найти значение корня с точностью е.

Для метода касательных в качестве начального приближения до­
статочно одной точки хО. Обычно выбирают тот конец отрезка [а, Ь],
для которого выполняется условие/(хо)/'(хо)>0.

93

Книги для программистов: https://t.me/booksforits

Алгоритм метода

1. Ввод исходных данных: а, Ь, £.
2. Расчет значений функции Да), Д6) на концах отрезка и значе­

ния второй производной от функции/” (а) и/” (Л).
3. Проверяем условие Да) Д'(а) > 0. Если условие выполняется,

то с = а, х = Ь, иначе проверяем условие ДЛ)Д'(/) > 0 с = Ь, х = а. Если
условие «быстрой» сходимости не выполняется, то принимаем с = а,
х = Ь.

4. хо = х.
5. Рассчитываем абсциссу точки пересечения хорды с осью ОХ

по формуле
fM

x = x°~fw

6. Проверка условия |х-хо|<=£. Если условие выполняется, то
переход к пункту 7, иначе переход к пункту 4.

7. Расчет закончен. Корень х*=х.

Функция метода

def newton (a,b,efflfX):
> 0: xO = a

else: xO = b
x = xO - ДхО)//1 (xO)
77=0

while abs(x — xO) > e:
n+=\
if n > 100:
printf Корень с заданной точностью не найден! ")
break

else:
xO = x
х=х0-Дх0)//1(х0)

return x

94

Книги для программистов: https://t.me/booksforits

Задание

Составить программу для нахождения корня функции /1 (х) = 0 и
функции /2(х) = 0 двумя методами: половинного деления и касатель­
ных, с точностью е = 0,00001.

Программа
Файл func.py

import math
def /1 (x): # первая функция

return 2 *x*x*x*x - 3 * x*x*x - 4 *x*x + 5 *x - 6
def /1 l(x): # первая производная первой функции

return 8*х*х*х - 9*х*х - 8 * х + 5
def /12(х): # вторая производная первой функции

return 24*х*х - 18*х*х - 8
def fl (х): # вторая функция

return math.expfnath.cos(2*x))-3 *math.sin(f.5 *x)+0.4
def fl l(x): # первая производная второй функции
return -2 *math.exp(math.cos(l *x)) *math.sin(l *x)-l .5 *math.cos(f.5 *x)
def fll(x): # вторая производная второй функции

return
4 *math.exp(math.cosfl *x)) fmath.cosfl *x)+math.sin(l *x))+0.7 5*math.sin
(0.5 *x)

Файл prog.py
def newton (a,b,eff\flf # метод касательных
iffla) *fl(a) > 0: xO = a
else: xO = b
x=x0-/x0)//l(x0)
н=0
while abs(x - xO) > e:
и+=1
if n > 100:
printf Корень с заданной точностью не найден! ")
break

95

Книги для программистов: https://t.me/booksforits

else:
xO = x
x = xO-/(xO)//1(хО)

return x
def dell (a,b,ef): # метод половинного деления

n=0
iffafflb) <= 0:
while abs(b - a)>e:
n+=l
if n > 100:
print!" Корень с заданной точностью не найден! ")
break

else:
с = (a + 6)*0.5

/Ж < 0: b = c
else: a = c

return (a + b) *0.5
else:
print ("Метод половинного деления: на заданном отрезке корней

нет")
return "*"

Файл main.ру
import prog
import func
a =float(input{ "a="))
b=float(input{ "b= "))
e=le-5
x=prog.del\ (a,b,e,funcfl)
ifx!="*":
print ("Метод половинного деления fl = "func.fl(x),"x=",x)

x=prog.newton (a,b,e,func.fl func.fl 1 func/12)
print ("Метод Ньютона fl = "func.fl (x)," x="pc)

96

Книги для программистов: https://t.me/booksforits

a =float(input("a = "))
b=float(input{ "b= "))
x=prog.del\ (a,b,e,func.jT)
ifx!="*":
print ("Метод половинного деления fl="func.fl(x)," x=",x)

x=prog.newton (a,b,e, func.flfunc.fi 1 func.fll)
print ("Метод Ньютонаfl="func.fl(x),"x="

Результат

a=2 Q X
b=3
Метод половинного деления fl= 7.951722163213049e-05 x= 2.180713653564453
Метод Ньютона fl= 5.329070518200751e-15 x= 2.1807107847570397
a=0
b=l
Метод половинного деления f2= -9.753223630282193e-06 x= 0.8636817932128906
Метод Ньютона f2= 3.3306690738754696e-16 x= 0.8636785981703813
>0

Для /1 корень равен 2,18071, для fl корень равен 0,86368 с уче­
том заданной точности е=1е-5.

Сравниваем возможности используемых методов. Метод поло­
винного деления ищет корень только на заданном отрезке, поэтому на
отрезке [7;8] корней нет. Метод Ньютона не ограничен отрезком, в
качестве отправной требуется только одна начальная точка, поэтому и
для /1 находит корень 2,18071, и для fl находит корень 17,98588.

а=7 Q х
Ь=8
Метод половинного деления: на заданном отрезке корней нет
Метод Ньютона fl= 8.430625086930377е-10 Х= 2.1807107847874554
а=7
Ь=8
Метод половинного деления: на заданном отрезке корней нет
Метод Ньютона f2= -7.771561172376096е-16 Х= 17.985877323368378

I

97

Книги для программистов: https://t.me/booksforits

func.flfunc.fi

Решение систем линейных уравнений (СЛАУ)

Метод простой итерации (метод Якоби)
Дана система п линейных уравнений:

tznXi +а12х2 + ... + а1ях„ = Д
а21х, + а22х2 +... + а2„х„ - Ь2 <

а„1х,+а„2х2+... + а„„х„=6„

и начальное приближение х° — {х®, х°> ■ ■ > хп)-
Найти решение этой системы с точностью е. Выполняются

условия существования единственного решения СЛАУ.
Достаточное условие сходимости: если выполнено условие

диагонального преобладания
п

j=l

то итерационный процесс сходится при любом выборе начального
приближения. Выбор начального приближения влияет на количество
итераций, необходимых для получения приближенного решения.
Наиболее часто в качестве начального приближения берут
х° = , ...,-^-1 или х° = {0,0, ...,0}.

1ац а22 апп)

Алгоритм метода

1. Ввод исходных данных: А, Ь, £.
2. Задание начального приближения х1.
3. Присваиваем х° = х1.
4. Расчет х1. Расчетная формула:

i = 1,2, п.

98

Книги для программистов: https://t.me/booksforits

5. Вычисляем наибольшую из разностей \xj — х°|.

6. Проверяем условие тах|ху — х°|< 8. Если оно выполняется, то
переходим к пункту 7, если нет — переходим к новой итерации, к
пункту 3.

7. Расчет закончен. Результат — значения х1.

Задание

Составить программу решения СЛАУ методом простой итера­
ции. Исходные данные вводятся с клавиатуры.

Программа
Файл clayX.py

def clayP(n,a,b,eps,x):
х=[];хО=[]; е=[]
for i in range(0,nf

xO. append(0)
x.append(b[i]/a[i][i])
e.append(abs(x[i]-xO[i]))

k=0
while max{e)>eps:
k+=\
for i in range(0,n):

xO[z]=x[z]
for i in range(fi,nf

s=Z>[z]/a[z][z]
for j in ranged,if

s-=zz[z][/’] *xO[/]/a[z][z]
for j in range(i+l,nf

5-=a[z][/pxO[/>[z][z]
X[Z] =5

for i in range(0,n):
e[z] =ate(x[z]-xO[z])

99

Книги для программистов: https://t.me/booksforits

x.append(k)
return x

def vvod (n, a,b,eps):
n=int(input("n="))
eps =float(input("eps = "))
a = [[0] *n for i in range(n)]
Z>=[0 for i in rangefi)}
for i in range(0,n):
for J in range (0,и):

printfa[{0:2},{l:2}] = "format(ij),end=' 9
a[z] [/] =float(input(f)

print("b[{0:2}] = "format(f),end=' 3
/?[/'] =float(inputQj)

return n,eps,a,b
def mainlQ:
«=[[]]
&=[]
/7=0; e=0
n,e,a,b=vvod (/?, a, b,e)
x=[]
x=clayP(n,a,b,e,x)
print ("—Результат-метод простой итерации— ")
print ("Количество итераций ="^[/7])
for i in range(f,n):

print(x[i],end=" ")
printf ")

mainiQ

Файл main.py
import clayi

100

Книги для программистов: https://t.me/booksforits

Результат

а[0, 0]= 5
а[0, 1]= 1
а[0, 2]= 1
Ь[0]= 7
а[1, 0]= 1
а[1, 1]= 5
а[1, 2]= 1
Ь[1]= 7
а[2, 0]= 1
а[2, 1]= 1
а[2, 2]= 5
Ь[2]= 7
—Результаты-метод простой итерации—
Количество итераций= 13
0.99999731564544 0.99999731564544 0.99999731564544
> |

Метод Зейделя
Алгоритм метода

1. Ввод исходных данных: A, b, £.
2. Задание начального приближения х1.
3. Присваиваем х° = х1.
4. Расчет х1. Расчетная формула:

t = 1,2, п.

5. Вычисляем наибольшую из разностей |ху — х®|.

6. Проверяем условие тах|ху — х°|< е. Если оно выполняется, то
переходим к пункту 7, если нет — переходим к новой итерации, к
пункту 3.

7. Расчет закончен. Результат — значения х1.

Задание

Составить программу решения СЛАУ методом Зейделя. Исход­
ные данные читаются из файла, имя которого вводится в перемен­
ную st.

101

Книги для программистов: https://t.me/booksforits

Программа

Файл clayz.py
def ClayZ(n,a,epc):
k=b
x0=[]
z=float(\)
while z>e: # or k<20:
k+=l
xO=x[.]
for i in range(f),n):

r=f!oat(a[i][n]/a[i][i])
for j in range(0,i):

r-=a[z][/]/a[z][z] *x0[/]
for j in range(i+\,ri):

r-=a[z][/]/zz[z][z]*x[/]
x[z] =r
z=zzZzs(x[z]-xO[z]);

returnff

st=inputf
f\ = openlst, 'r')
«=[]
e=1.0£'-5
n=int(f\ .readline(f)
for i in range(0,n):

c=fl .readlineO
sl=c.rstripO
s=[]
51= s\.splitf
for j in range(O,len(sY)):

s.append [floats 1 [/]))
a.appendf)

102

Книги для программистов: https://t.me/booksforits

for i in range(O,ri):
x.append(fioat(0))

print (a)
printf__Результат метод Зейделя__")
print ("Число итераций=", C/ayZ(«,a,e,x))
s=""
for i in range(0,n):

d=str("{0:.4f} "format(x[i]))
s+=d

print (5)

Файл mainpy
import clayz

Файл с исходными данными st.txt
3
5 117
15 17
115 7

Результат

st.txt Q ©
[[5.0, 1.0, 1.0, 7.0], [1.0, 5.0, 1.0, 7.0], [1.0, 1.0, 5.0, 7.WJJ
__Результаты метод Зейделя__
Число итераций^ 14
1.0000 1.0000 1.000©
>□

Интерполяция по Лагранжу

Пусть некоторая функция fix) довольно сложная для исследова­
ния задана на отрезке [хо; хя] в виде таблицы, называемой сеточной
функцией:

Xi хо XI ... Хп

yi Я ... уп

103

Книги для программистов: https://t.me/booksforits

где Xi = хо, xi, хп — узлы интерполяции, определенные на отрезке
[х0; х«], и у,- равные значениям Дх,) в узлах интерполяции: уо = ,Д*о),
yi =fix\\ ...,уп = fixn). В простейшем случае узлы интерполяции обра­
зуют равномерную сетку, то есть расстояние между соседними узлами
одинаково, однако, сетка может быть и неравномерной. Необходимое
и достаточное требование к сетке: хо < xi < Х2 < ... < хп. Функция Дх)
может быть заранее не известна, а узлы интерполяции х; и значения у,-
являются результатом экспериментальных исследований.

Наиболее востребованными являются задачи двух типов:
♦♦♦ построить функцию F(x) — интерполяционную функцию,

принадлежащую известному классу, например, к многочленам, и при­
нимающую в узлах интерполяции те же значения, что и fix): F(xo) =уо,
F(xi) =yi, ...,F(xn) =yn;

❖ уплотнение таблицы — определение приближенного значе­
ния функции F(x) для заданного а, удовлетворяющего условию:
хо < а < хп.

Задание

Составить программу для решения задачи уплотнения таблицы
методом Лагранжа.

Алгоритм метода

Приближенное значение находим по формуле:
п П , X

Z—I 1 1 I X; — X/)
i=0 j=0 V 1 J

j*i

Программа

Файл interL.py
def intL(n,x,y,dy. # Реализует метод Лагранжа
5=0
for i in range (0,ri):

104

Книги для программистов: https://t.me/booksforits

/?=1
for j in range (0,«):

ifH=j' /?*=(a-x[/‘])/(x[z]-x[/’])
■s+=y[z] *P

return s

def vvod (st): # Реализует чтение из файла исходных данных
f=open(st, 'г')
п=int(f.readline(f)
a =float(f.readline(f)
*=[];у=[]
for i in range(0,n):

x.append(Q)
y.appendft)

for i in range(0,n):
c=freadline()
s=c.rstrip()
s= s.splitf ')
x[z] =float(s[0])
y[z]=/7oa<5[l])

return (n,a,x,y) # возвращает число

st= "inter.txt"#st=input()
n,ayc,y=vvod(st)
ya=intL(n^c,y,a)
print ("y({0: ,2/})={l: 0.4/} "format(a,ya))

Файл mainpy
import interL

Файл с исходными данными inter.txt
5
15
00
10 0.1736

105

Книги для программистов: https://t.me/booksforits

20 0.3420
40 0.6428
50 0.7660

В файле первое число п = 5, второе а = 15. Далее приведена таб­
лица, в каждой строке которой задается х[/] и у [г].

Результат

у(15.00)= 0.2588

Вычисление определенных интегралов

Вычислить определенный интеграл /(%) ■ dx, где f{x) — не­
прерывная на отрезке [а; 6] функция.

Метод трапеций
Алгоритм метода

1. Вводим исходные значения е, а, Ь.
2. Задаем п=\, S=0.
3. Приравниваем So=S, п=2-п.
4. Расчет h=(b-d)/n.
5. Расчет приближенного значения интеграла:

Ж-i) +/(xQ
\ 2

п-1

+ 2
i=l

6. Проверка условия |Sb—S'|<=e. Если условие выполняется, то
переходим к пункту 7, нет — переходим к пункту 3.

7. Расчет закончен. Результат равен S.
Функция, реализующая метод трапеций:

def Trap fi,a,bf):
s = (fa) +Д&))*0.5
h = (b-a) /п

106

Книги для программистов: https://t.me/booksforits

for i in range(\,n):
s +=fla + h*(i-\f)

return s*h

Метод Симпсона (метод парабол)
Алгоритм метода

1. Вводим исходные значения е, а, Ь.
2. Задаем п =1,5=0.
3. Приравниваем So=S, п=2-п.
4. Расчет h=(b-a)/n.
5. Расчет приближенного значения интеграла:

п-1 п-2
s = + + £ fl + 2- ft)

i=l,3,5,... i=2,4,6,.„

6. Проверка условия |SO—S|<=e. Если условие выполняется, то пе­
реходим к пункту 7, нет — переходим к пункту 3.

7. Расчет закончен. Результат равен 5.
Функция, реализующая метод Симпсона:

def Simp(n,a,bf):
s)=f(a) +fb)
h = (b - a) / n
for i in range (1,«,2):

s += 4*/(a + h*i)
for i in range (2,«,2):

s += 2 *fla + h*i)
return s*h/3

Задание

Составить программу для приближенного вычисления числа л,
используя формулу: J^/lCx) • dx, где /1(х)=4.0/(1+х*х) и функции

107

Книги для программистов: https://t.me/booksforits

Лапласа J* f2(z) • dz, где f2(z) = -r=e (z2/2) двумя методами: тра-

пеций и Симпсона с точностью е.
Программа

Файл Integralf)
defffx):

return 4.0/(1+х*х) # подынтегральная функция!
import math
def fl (x):

return math.sqrt(\l(2*math.piy)*math.expf-x*x*0.5) #функция2

def Met(n,a 1 ,b 1 ,Mf):
M — имя метода

f— имя подынтегральной функции
return Мfi,a 1, b\,f)

Метод трапеций
def Trapfi,a, bf):
s = (fa) +fb)) *0.5
h = (b-a) / n
for i in rangeffn):

s +=fa + h*(i-\))
return s*h

Метод Симпсона
def Simp(n,a,bf):
s =» +fb)
h = (b-a) / n
for i in range (l,n,2):

s += 4*fa + h*i)
for i in range (2,n,2):

s += 2 *fa + h*i)
return s*h/3

108

Книги для программистов: https://t.me/booksforits

def inteG (a,b,eps,Met f):
n = 2
InO = Metfi, a, b,f)
n=4
Ini = Metfi, a, b,f)
while abs(In 1 - InO) > eps:
n*=2
InO = Ini
Ini = Met(n, a, b,f)

return In 1

Файл main.py
import math
import Integral
print ("■—Метод Симпсона—")
a = 0; b = 1; eps = le-5
rez = Integral.inteG(a,b,eps,Integral.Simp,Integral.fl)
print ('yi = {0.’ 0.5} PI={1: 0.5}" formafrez, math.pi))
a = 0; b = 2.5; eps = le-5
rez = Integral.inteG(a,b,eps,Integral.Simp,Integral.fl)
v=math.erflb/2**0.5)/2
print("f2={0: 0.5} Функция Лапласа={1: 0.5}"format(rez,v))
print ("—Метод трапеций—")
a = 0; b = 1; eps = le-5
rez = Integral.inteG(a,b,eps,Integral.Trap,Integral.fl)
print (yi = {0: 0.6} PI={1: 0.6} "format(rez,math.pi))
a = 0; b = 2.5; eps = le-5
rez = Integral. inteG(a,b,eps,Integral. Trap,Integral.fi)
print("f2={0: 0.5} Функция Лапласа={1; 0.6}"formatfez,
math.erf[b/2**0.5)/2))

109

Книги для программистов: https://t.me/booksforits

Integral.fi

Результат

—Метод Симпсона—
11= 3.1416 Р1= 3.1416
12= 0.49379 Функция Лапласа= 0.49379
—Метод трапеций—
11= 3.1416 Р1= 3.14159
12= 0.4938 Функция Лапласа= 0.49379
I

Решение обыкновенных
дифференциальных уравнений (ОДУ)

Постановка задачи
Дано: ОДУ вида у’=F(x,y) и начальные условия хо, у(хо)=уо, а

также значения хп и е. Найти: у(х).

Метод Рунге — Кутта

Классический метод Рунге — Кутта четвертого порядка для ре­
шения ОДУ первого порядка в постановке Коши описывается следу­
ющей системой пяти равенств:

yi+i=yi+~ (A:i+2fe+2fe+^4),6

где

ki=F(Xi,yi),

k2=F(xAyi+^,

1 Г/ jJ1 A-k2h\ k-i=F(Xi+-,yi+-^-),

kt=F(xi+h, yi+kih).

Алгоритм метода

1. Вводим исходные значения хо, уо, хп, £.
2. Приравниваем п = 5, ууо = уо,уу\ = yo+(xi -хо)/(хо,уо).
3. Приравниваемууо = yyi, п = 2-п, h = (xi -Хо)/п.

ПО

Книги для программистов: https://t.me/booksforits

4. Расчет приближенного значения уу\ = у(хп).

к\ = F(xi,yi), кг = F(x;-+p у;+^), fe = F(xd~, У(^~), fa = F(xj+h, yt+fahf

y;+i= yi+~ (fa +2кг+2fa+kf.6

5. Проверка условия |yyi-yyo| <=£. Если условие выполняется,
то переходим к пункту 6, нет — переходим к пункту 3.

6. Расчет закончен. Результат равен ууi.

Задание

Составить программу для приближенного решения методом
Рунге — Кутта двух дифференциальных уравнений первого порядка:

У' =Л(х,у),
2г х 2,3

/1(х,у) = ecos + 1,5 ■ sin(y) - 2
+ 0,2

при начальных условиях хо = 0, у(хо) = 0,1, для хп = 2 с точностью
£ = 0,001.

У =f2(x, y),f2(x, у) = х + у/2

при начальных условиях хо = 0, у(хо) = -0,3, для хп = 2,5 с точностью
£ = 0,0001.

Программа

Файл diff.py
import math
def fl (x,y):

return math.exp(math.cos(x)**2)+l.5*math.sin(y)-2.3/(x*x+0.2)
deff2 (x,y):

return x+0.5 *y
def PKA (x0,y0^c\,epsf):

n=5
yyO=yO
yy 1 =y0+(x 1 -xO) *Дх0,у0)
while abs(yy\-yy0)>eps:

111

Книги для программистов: https://t.me/booksforits

ууО=хи1
л*=2
h = (xl -хО) /п
гх=[]
<У=[]
for i in range (О, и+1):

rx. append(О)
ry. append(li)

x=xO
rx[0]=x0
ry[O] = j'O
for i in range (О, и+1):

=/rx[z-l], ry[z — 1])
kl =flrx\i - 1] + //*0.5, ry[i- 1] + kl *//*0.5)
k3 =ffx[i- 1] + //*0.5, ry[i - 1] + /12 *//*0.5)
kA =ffx[i- 1] + h, ry[i - 1] + /13*//)
ry[z] = ry[i- 1] + /z/6.0*(£l+242+243+M)
rx[/]=x
X += //

yyl =<уН
return yyl

def Metodia 1 ,b 1 ,ak,eps,Mf):
return M(a\, bl, ak, epsf)

xO = 0; xl =2.0; yO =0.1
y=Metod(xO ,j’O,xl ,0.001 ,PKAfl)
print ("y({0: 0.2})= {1: 0.4}"format(x\,уУ)
xO = 0; xl = 2.5; j4) = -0.3
у =Metod(xO,yO,xl ,0.0001 ,PKAJT)
print fy({Q: 0.2})= {1: 0.4} "format(xl,y))

Файл main.py

import math
import diff

112

Книги для программистов: https://t.me/booksforits

Результат

у(2.0)= -3.184 Q X
у(2.5)= 4.961
3- I

Нахождение минимума функции f(x)

Постановка задачи: дана функция fx). Найти локальный мини­
мум этой функции с заданной точностью е.

Этапы решения задачи:
> локализация минимума — выбор отрезка, на котором нахо­

дится один минимум. Производится исследование функции fix) для
нахождения отрезков, содержащих по одному минимуму;

> уточнение минимума — по выбранному алгоритму последо­
вательно сужается отрезок, содержащий минимум, до такой степени,
пока не станет выполнять условие точности £>0.

Метод двойного половинного деления
Локализация минимума

Строим таблицу значений и график функции:

f= exp(cos(x)A2)-3*sin(x/2)+0.7.

График:

113

Книги для программистов: https://t.me/booksforits

Выбираем отрезок с первым из видимых на рисунке минимумов
[1;3].

Алгоритм метода

1. Ввод исходных данных: а, Ь, е.
2. Определение положения точек xi, хг: xi = а+0,25(Л-а);

Х2 = а+0,75-(Л-а).
3. Проверка условия/(xi) <Дх2). Если условие выполняется, то b =

= Х2, иначе а = х\.
4. Проверка условия (b-а) <= е. Если условие выполняется, то пе­

реходим к пункту 5, нет — переходим к пункту 2.
5. Расчет закончен. Минимум находится в точке х* = (а+6)/2, ми­

нимальное значение функции на отрезке [а; Ь} равной**)-
Программа

Файл optim.py
import math
deff\fx):

return math.exp((math.cos(x))**2)-3*math.sin(x*Q .1
def Met(a, b, eps, M, f):

return M (a, b, eps,f)
def delP (a, b, eps,f):

n = 0
while abs(b-d)>eps:

n+ = 1
xl = a + 0.25 * fb - a)
x2 = a + 0.75 * (b - a)
iffixV) < flxl): b = x2
else: a = xl

#print("n=",ri)
return (a+bfdPS

a = \
b = 3

114

Книги для программистов: https://t.me/booksforits

eps = le-8
x = Met(a, b, eps, delP,fV)
prints "x= "pc," Дх)=",/l (x))

Файл mainpy
import math
import optim

Результат

x= 1.968678213962888 f(x)= -0.6367338957026429 Q X
I

Парная регрессия

Линейная модель парной регрессии
Линейная регрессия сводится к нахождению уравнения вида

ур = а ■ х + b или у = а • х 4- Ь+е.
Уравнение вида ур = а ■ х + b по заданным значениям фактора х

позволяет рассчитать теоретические значения результирующего пока­
зателя, подставляя в него фактические значения фактора х.

Построение линейной регрессии сводится к оценке ее парамет­
ров а и Ь. Классический подход к оцениванию параметров линейной
регрессии основан на методе наименьших квадратов (МНК). МНК
позволяет получить такие оценки параметров а и Ь, при которых сум­
ма квадратов отклонений фактических значений результирующего
показателя у от теоретических ур минимальна:

п п

Ф = У (у; - Ур;)2 = У min
i=l i=l

где п — число экспериментальных точек.
Для определения минимума функции вычисляем частные произ­

водные по каждому из параметров а и b и приравниваем их к нулю.

115

Книги для программистов: https://t.me/booksforits

— a ■ X[— b) ■ Xi = 0

n
дф v1

1 Метод наименьших квадратов: методические указания и индивидуальные
задания по выполнению лабораторной работы № 15 / Юго-Зап. гос. ун-т ; сост.
Л. И. Студеникина, Т. В. Шевцова. — Курск, 2011. — 52 с.

— = -2^(У/ -a-%i -b) = 0
i=l

Производим простейшие преобразования и получаем систему
линейных уравнений:

Решаем систему линейных уравнений и получаем:

g-i(y. ■ X,) у,-g.iX,
2?=1х?-п-(2?=1^,)2

g«xf
Введем обозначение (остаточная дисперсия):

п

i=l

Задание

Постановка задачи1
Д. И. Менделеев в труде «Основы химии» приводит данные рас­

творимости у натриевой селитры NaNOs на 100 г воды в зависимости
от температуры t°\

116

Книги для программистов: https://t.me/booksforits

z,° 0 4 10 15 21 29 35 51 68

yi 66,7 71,0 76,3 80,6 85,7 92,9 99,4 113,6 125,1

п = 9. Составить программу для расчета коэффициентов по а и b ли­
нейной парной зависимости по МНК.

Файл MNKl.py
import math
def mnkl(n, x, y):
zl=0;z2=0;bl=0; Ь2 = 0
print("Линейная модельyp = a*x+b")
printf x у yp \y~yp\")
print f")
for i in rangefffn):
#print("x *y= "л[/] *y[z], ’y=}’[/])
zl+=x[z]*x[z]
z2+=x[z]
Z>l+=x[z]*y[z]
b2+=y[i]

a=(bl *n-b2*z2)/(zl *n-z2**2)
b=(bl-zl *a)/z2
5=0
for i in range(0,ri):

yp=a*x[i]+b
d=abs(y[i]-yp)
s+=d**2
print("{0: 0.2f} {1:0.2/} {2:0.2/} {3: .3f}"formafx[i],y[i],yp, <0)
printf-")
rez=[0,0,0]
rez[0]=a
rez[l]=b
rez[2] =s
return rez

117

Книги для программистов: https://t.me/booksforits

Файл main.ру
import MNK2
х = [О, 4,10, 15,21,29,35,51,68]
у = [66.7, 71.0, 76.3, 80.6, 85.7, 92.9, 99.4, 113.6, 125.1]
п = 9
a,b,s = MNK2.mnkl(n, х, у)
print {'а = {0: 0.3/} 6={1: 0.3/} '.format(a, 6))
print("s = {():().3f}".format(s))

Результат

Линейная модель ур=а*х+Ь
X У УР 1у -ур 1

0.00 66.70 67.56 ।0.857
4.00 71.00 71.05 ।0.047
10.00 76.30 76.28 0.018
15.00 80.60 80.64 0.044
21.00 85.70 85.88 0.179
29.00 92.90 92.86 0.041
35.00 99.40 98.09 1.306
51.00 113.60 112.05 1.547
68.00 125.10 126.89 1.785

а= 0.872: Ь= 67. 557
s=8.059
>1

Нелинейные модели парной регрессии
Чаще всего используются нелинейные модели, которые доста­

точно просто можно привести к линейным моделям относительно па­
раметров а и Ь, например:

■ степенная —ур =
■ показательная —ур = Ьа*',
■ экспоненциальная—ур = еах+ь;

1
а-х+Ь'■ обратная — ур

118

Книги для программистов: https://t.me/booksforits

Линеаризация функции ур = Ьх°:
• прологарифмируем функцию 1п(ур) = ln(Z>)+a-ln(x);
• введем новые переменные Y = 1п(уД В = ln(b), X = 1п(х);
• получаем линейное уравнение Y=a-X+B;
• рассчитываем а и В, Ь = ев.
Линеаризация функции = Ьах:

• прологарифмируем функцию 1п(уА) = ln(Z>)+x-ln(a);
• введем новые переменные Y = ln(yp), В = 1п(6), А = 1п(а);
• получаем линейное уравнение Y = А -х+В;
• рассчитываем А и В, Ь = ев, а=ел.
Линеаризация функции ур = еах+ь:
• прологарифмируем функцию 1п(ур) = а-х+Ь;
• введем новую переменную Y = 1п(ур);
• получаем линейное уравнение Y = а-х+Ь;
• рассчитываем а и Ь.

1
а-х+Ь

• введем новую переменную Y = 1п(д’р);
• получаем линейное уравнение Y = а-х+Ь;
• рассчитываем а и Ь.

Линеаризация функции ур

Задание

По данным, приведенным в таблице:

X 1,08 1,63 1,04 1,49 0,97 0,90 0,77 0,69 0,57 0,62

У 0,49 0,49 0,46 0,52 0,38 0,33 0,34 0,34 0,33 0,28

Примечания, х — средняя заработная плата (тыс. руб.); у — прожиточный минимум
на душу населения (тыс. руб.).

рассчитать параметры а и b по линейной, экспоненциальной и обрат­
ной моделям.

119

Книги для программистов: https://t.me/booksforits

Линейная модель: уэ = а*х+Ь:

import math
def mnkl(n,x,yf
z\ =0; z2=0; b\ =0; Z>2=0
printi "Линейная ")
for i in range(0, n):

zl+=x[z]*x[z]
z2+=x[z]
M+=x[z] *y[z]
b2+=y[i\

a=(b\ *«-Z>2*z2)/(zl *n-z2**2)
b=(b\-z\ *a)/z2
s=Q
for i in range(0, ri):

yp=a*x\i\+b
d=abs(y\i\-yp)
s+=d**2
print(f{0: 0.2/} {1:0.2/} {2:0.2/} {3: 0.3/} "format(x[i],y[i],yp, d))
rez=[0,0,0]
rez[0]=a
rez[1] =b
rez[2] =s

return rez

Экспоненциальная модель уэ = ea'x+b:

def mnke(n,x\,y\f
zl=0;z2=0;bl=0; b2=0
prinf "Экспоненциальная ")
M]
for i iny\:

y.append (math.logff)

120

Книги для программистов: https://t.me/booksforits

x=xl
for i in range(O,ri):

zl+=x[z]*x[z]
z2+=x[z]
Z>l+=x[z]*y[z]
Z>2+=y[z]

a=(b\ *zz-Z>2*z2)/(zl *zz-z2**2)
b=(b\-z\ *a)/z2
b=math.exp(b)
s=0
for i in range(O,ri):

yp=b *math.exp(a *x[z])
d=abs(y\ [/]-у/>)
s+=d**2
print("{0:0.2/} {1:0.2/} {2:0.2/} {3: 0.3/} " format(x[i\, y\[i\,УР, <0)
rez=[0,0,0]
rez[0]=a
rez[l]=b
rez[2] =s

return rez

Обратная модель уэ = 1
a*x+b'

def mnkgfiyX\, у 1):
zl=0;z2=0;Z?l=0; Z>2=0
print("Обратная ")
У=[]
for i in у 1;

у.append (1/z)
x=xl
for i in range(0, n):

zl+=x[z]*x[z]
z2+=x[z]

121

Книги для программистов: https://t.me/booksforits

Zzl+=x[z]*y[z]
/>2+=ЯЛ

a=(b\ *n-b2*z2)/(zl *n—z2**2)
b=(b\-z\ *d)/z2
s=Q
for i in range(O, n):

yp=\/(a*x[i\+b)
d=abs(y\ [z]-yp)
s+=d**2
print("{0: 0.2/} {1:0.2/} {2:0.2/} {3: 0.3/} "format(x[i], yl[z],yp, d))
rez=[0,0,0]
rez[0]=a
rez[1] =b
rez[2]=s

return rez

Для исходных данных:

import MNKA
x=[64, 68, 82, 76, 84, 96, 100]
j;=[64, 56, 52, 48, 50, 46, 38]
zz=7
a,b,s=MNK\ ,mnkl(n,x,y)
print ('a={0: 0.3/} b={l: 0.3/} \format(a,b))
print("s={0:0.3f} "formates'))
print ('-----------------------
a,b,s=MNK\ ,mnke(n,x,y)
print ('a={0: 0.3/} 6={1: 0.3f} \format(aff)
print("s={0:0.3f} ".formates))
print ('■-----------------------)
a,b,s=MNK\.mnkgfiyX,^)
print ('a={0: 0.5/} 6={1: 0.5/}'format(a,by)
print("5={0:0.3/} " formatis))

122

Книги для программистов: https://t.me/booksforits

Результат
Линейная

64.00 64.00 60.17 3.827
68.00 56.00 57.97 1.969
82.00 52.00 50.26 1.743
76.00 48.00 53.56 5.562
84.00 50.00 49.15 0.845
96.00 46.00 42.54 3.456
100.00 38.00 40.34 2.340

а = -0.551, 6 = 95.431,
5 = 70.636

Экспоненциальная
64.00 64.00 60.61 3.391
68.00 56.00 57.99 1.992
82.00 52.00 49.69 2.309
76.00 48.00 53.09 5.092
84.00 50.00 48.61 1.393
96.00 46.00 42.58 3.422
100.00 38.00 40.74 2.740

а= -0.011,6= 122.811,
5 = 67.886

Обратная
64.00
68.00
82.00
76.00
84.00
96.00
100.00

64.00
56.00
52.00
48.00
50.00
46.00

38.00

61.34
58.12
49.12
52.61
48.06
42.53

40.97

2.665
2.124
2.878
4.614
1.941
3.465

2.965

123

Книги для программистов: https://t.me/booksforits

a = 0.00023, b= 0.00189,
5 = 65.754

Для исходных данных:

import MNK\
x=[1.08,1.63,1.04,1.49,0.97,0.9,0.77,0.69,0.57,0.62]
y=[0.49,0.49,0.46,0.52,0.38,0.33,0.34,0.34,0.33,0.28]
«=10
a,b,s=MNK\ .mnkl{npc,y)
print ('a={0: 0.3f} 6={1: 0.3/}',format(a,by)
print(J's={&.Q.3f} ",format(sy)
print ('-----------------------)
a,b,s=MNK\ ,mnkl(npc,y)
print ('a={0: 0.3f} 6={1: 0.3f}\format(a,bj)
print("s={tyS).?>f} "formates})
print ('■----------------------- ')
a,b,s=MNK\ ,mnkl(n,x,y)
print('a={0: 0.3f} 6={1: 0.3/}'.format(a,b'))
print("5={0:0.3/} "formates})

Результат
Линейная

1.08 0.49 0.42 0.072
1.63 0.49 0.54 0.045
1.04 0.46 0.41 0.050
1.49 0.52 0.51 0.015
0.97 0.38 0.39 0.015
0.90 0.33 0.38 0.050
0.77 0.34 0.35 0.012
0.69 0.34 0.34 0.005
0.57 0.33 0.31 0.020
0.62 0.28 0.32 0.040

a = 0.213, 6 = 0.189,
5 = 0.015

124

Книги для программистов: https://t.me/booksforits

a = 0.530, b = 0.231
5 = 0.017

Экспоненциальная
1.08 0.49 0.41 0.080
1.63 0.49 0.55 0.058
1.04 0.46 0.40 0.059
1.49 0.52 0.51 0.011
0.97 0.38 0.39 0.007
0.90 0.33 0.37 0.043
0.77 0.34 0.35 0.008
0.69 0.34 0.33 0.007
0.57 0.33 0.31 0.017
0.62 0.28 0.32 0.041

a= -1.347, 6 = 3.947,
5 = 0.022

Обратная
1.08 0.49 0.40 0.089
1.63 0.49 0.57 0.081
1.04 0.46 0.39 0.067
1.49 0.52 0.52 0.005
0.97 0.38 0.38 0.001
0.90 0.33 0.37 0.036
0.77 0.34 0.34 0.004
0.69 0.34 0.33 0.009
0.57 0.33 0.31 0.015
0.62 0.28 0.32 0.041

Задание

По данным, приведенным в таблице:

Примечания, х — температура, у — скорость некоторой химической реакции.

X 10 21 34 40 56 60 70 80 90 100

У 0,01 0,08 0,14 0,21 0,38 0,45 0,52 0,61 0,75 0,91

125

Книги для программистов: https://t.me/booksforits

рассчитать параметры а и b по линейной ур = ах+b, экспоненциальной

ур=еах+ь и обратной ур = —-— моделям. Указать лучшую модель.CL X ”1” Ь
Линейная модель//, = а*х+Ь:

Текст функции Результат
def mnkl(n^c,y)\
zl=0; z2=0;M=0; £2=0
prinf "Линейная ")
for i in range(fi,n):

zl+=x[z]*x[z]
z2+=x[z]
Z>l+=x[z]*y[z]
b2+=y[i]

a=(b 1 *n-b2 *z2)/(z 1 *zz-z2 * *2)
b=(b 1-zl *d)/z2
5=0
for i in range(0,ri):

yp=a*x[i]+b
d=abs(y[i]-yp)
5+=J**2
printer 0.2/} {1:0.2/} {2:0.2/} {3:0.3/}".

format(x\i\,y\i\,yp, d))
rez=[0,0,0]
rez[0] =a
rez[l]=b
rez[2] =s

return rez

Линейная
10.00 0.01 -0.05 0.062
21.00 0.08 0.06 0.023
34.00 0.14 0.19 0.046
40.00 0.21 0.25 0.036
56.00 0.38 0.41 0.025
60.00 0.45 0.44 0.005
70.00 0.52 0.54 0.024
80.00 0.61 0.64 0.034
90.00 0.75 0.74 0.007
100.00 0.91 0.84 0.068
a = 0.010, b = -0.152,
5 = 0.015

Экспоненциальная модель ур=еах+ь:

Текст функции Результат
def mnkeiyi^X.yV):
zl=0; z2=0;Z>l=0; b2=0
print{ "Экспоненциальная ")

Экспоненциальная
10.00 0.01 0.04 0.026
21.00 0.08 0.06 0.023

126

Книги для программистов: https://t.me/booksforits

Продолжение табл.
Текст функции Результат

у=[]
for i in yl:

у.append (math.logff)
.V A'l
for i in range(0,n):

zl+=x[z]*x[z]
z2+=x[i]
M+=x[z’]*y[z]
b2+=y[i]

a=(bl *n-b2*z2)/(zl *n-z2**2)
b=(bl-zl*a)/z2
b=math.exp(b)
5=0
for i in range(0,n):

yp=b *math.exp(a *x[z])
d=abs(yl [z]-yp)
s+=d**2
print("{(y.Q.2f} {1:0.2/} {2:0.2/} {3:

0.3/} " format(x[i\, yl [z], yp, d))
rez=[0,0,0]
rez[0] =a
rez[l]=b
rez[2] =s
return rez

34.00 0.14 0.10 0.041
40.00 0.21 0.13 0.083
56.00 0.38 0.25 0.133
60.00 0.45 0.29 0.159
70.00 0.52 0.44 0.078
80.00 0.61 0.67 0.061
90.00 0.75 1.02 0.267
100.00 0.91 1.54 0.633

a = 0.042, b = 0.024,
5 = 0.535

Обратная модель уэ 1
а*х+Ь'

Текст функции Результат
def mnkg(nyX\,y\):
zl=0;z2=0;M=0; Z?2=0
prinf "Обратная ")
y=[]
for i in yl :

y.append (l/z)
x=xl

Обратная
10.00 0.01 0.02 0.013
21.00 0.08 0.03 0.052
34.00 0.14 0.04 0.104
40.00 0.21 0.04 0.168
56.00 0.38 0.07 0.306

127

Книги для программистов: https://t.me/booksforits

Продолжение табл.
Текст функции Результат

for i in range(fi,ri):
zl+=x[z]*x[z]
z2+=x[i]
bl +=x[z] *y[z]
b2+=y[i]

a=(bl *n-b2*z2)/(zl *n-z2**2)
b=(bl-zl *a)/z2
5=0
for i in range(0,ri):

yp=l/(a*x[i]+b)
d=abs(yl [z]-jt?)
s+=t/**2

printer 0.2f} {1:0.2/} {2:0.2/} {3:
0-3/}"/orwal(x[Z],yl[Z], yp, d))

rez=[0,0,0]
rez[0] =a
rez[l]=b
rez\2] =s

return rez

60.00 0.45 0.09 0.359
70.00 0.52 0.22 0.302
80.00 0.61 -0.55 1.156
90.00 0.75 -0.12 0.871
100.00 0.91 -0.07 0.978

a = -0.643, 6 = 49.574,
5 = 3.408

Ответ: наименьшее значение остаточной дисперсии 5 у линейной
модели, следовательно, для данного расчета она является лучшей.

128

Книги для программистов: https://t.me/booksforits

Графическая интерпретация данных.
Библиотеки numpy, matplotlib, pandas

В Python есть много возможностей для графической интерпре­
тации данных.

Библиотека питру является одной из наиболее часто используе­
мых библиотек для реализации алгоритмов вычислительной матема­
тики, анализа временных рядов и визуализации данных в форме мас­
сивов, в частности, представляемыми списками и кортежами.

Библиотека matplotlib предназначена для построения графиков,
гистограмм различных видов и других способов графической интер­
претации данных. Графики могут быть представлены в 2D и
ЗЭ-форматах.

Библиотека pandas широко используется для анализа данных
(Data Mining). Данные в ней реализуются в виде структур Series и
DataFrame. Пакет также содержит ряд методов для фильтрации дан­
ных и модули выполнения операций ввода-вывода.

Задача 14
Составить программу для построения семейства графиков функ­

ций:

/1(х) = sin(0,8x)2 + ecos(x)

У2(х) = ecos(2x) - 3sin(0,5x) + 0,4

Программа

Текст модуля Grafik.py
import питру as пр, matplotlib.pyplot as pit
Семейство графиков
def grflfx):

return np.sin(0.8*x) **2+np.exp(np.cos(x))
def grf2(x):

return np.exp(np.cos(2 *x))-3 *np.sin(ft.5 *x)+0.4

129

Книги для программистов: https://t.me/booksforits

хп=О
xk=np.pi*6
7777=200
X=np.linspace(xn^ck,nn)
Y,Z=grfl(X),grf2(X)
plt.plot(X,Y)
plt.plot(X,Z)
plt.showO

Модуль main.py
import Grafik

Результат

Задача 15
Составить программу для построения семейства графиков функ­

ций:

/1 = -0.12х

/2 = 10sin(0.2x)

/3 = 15/(1 + 4,1 ■ х)

с использованием структуры DataFrame.

130

Книги для программистов: https://t.me/booksforits

Программа

#с использованием фреймов
import pandas as pd
import matplotlib.lines
import matplotlib.pyplot as pit
import numpy as np
data = {yi '. [-0.12*xforx in razjge(lOO)],

'f2':[10*np.sin(Q.2*x) forx in range(lOO)],
fl[15/(1+4.1 *x) for x in ranged 100)]}

df=pd.DataFrame(data)
plt.axisi [0,100,-20,20])

plt.plot(df["fl"], '-k',df["fl"], '-k',df["fl "] fk')
plt.legend(data, loc=2) # вывод легенды
plt.showO

Результат

131

Книги для программистов: https://t.me/booksforits

Задача 16
Составить программу для построения перевернутого конуса в

ЗО-формате.
Программа

import matplotlib.pyplot as pit
from matplotlib import cm
import numpy as np
fig = pit.figure^
ax = fig.addsubplotlf 11, projection='3dr)
и = np.linspace(O, 2 * np.pi, 100)
v = np .linspacefif np.pi, 100)
x = 5 * np.outer(np.cos(u), v)
у = 10 * np.outer (np.sin(u), v)
z = 50 * np.outer(np.ones(np.size(u)\ v)
ax.plot_surface(x, y, z, rstride=A, cstride=4, стар = cm.copper)
ax.set_xlabel('x-axis')
ax.set_ylabel('y-axis 3
ax.set_zlabel('z-axis')
plt.show()

Результат

132

Книги для программистов: https://t.me/booksforits

Программа

import matplotlib.pyplot as pit
from matplotlib import cm
import numpy as np
fig = pit figured
ax ~ fiig-uddsubplotd 11, projection='3dr)
и = np Jinspacelfi, 2 * np.pi, 100)
v = npdinspacelfi, nppi, 100)
x = 5 * np.outer(np.cos(u), v)
у = 5 * np.outer(np.sin(fi), v)
z = 5 * np.outer(np.ones(np.size(u)b v)
ax.plot_wireframe(x,y, z, rstride=5, cstride=5, color= (0.1,0.1,0.1),
linewidth=T)
ax.set_ylabel{ 'y-axis 3
ax.set_zlabel('z-axis3
plt.showd

Результат

133

Книги для программистов: https://t.me/booksforits

Построение рисунков. Библиотека turtle

Черепашья графика входила в язык программирования Logo,
разработанный Уолли Фейрцейгом (Wally Feurzeig), Сеймуром Папер-
том (Seymour Papert) и Синтией Соломон (Cynthia Solomon) в 1967
году. Рабочим инструментом (карандашом) является черепашка
{turtle), которая по умолчанию находится в точке с координатами (О,
0) в плоскости х-у и может выполнять ряд команд:

forward^), или fdk) — черепашка перемещается вперед на задан­
ное число пикселей;

backward^), или Ькк), или back)) — черепашка перемещается
назад на заданное число пикселей;

righXQ, или /Т() — повернуть черепашку вправо на заданное чис­
ло градусов;

leftk), или /?() — повернуть черепашку влево на заданное число
градусов;

dotk) — рисовать точку;
circle^) — рисовать окружность;
position^), или posQ) — текущее положение карандаша на холсте;
xcor(), ycorQ — координата х карандаша на холсте и координата

у соответственно;
pendownk), или pd(), или downk) — опустить карандаш, начать

рисовать;
репирк), или ри(), или ир() — поднять карандаш, перестать рисо­

вать;
pensizek), или widthk) — установить толщину карандаша;
pencolork) — установить цвет карандаша;
fdlcolork) — установить цвет заливки;
begin Jll\k> — начало заливки;
endJillk) — окончание заливки.

134

Книги для программистов: https://t.me/booksforits

Задача 17
Составить программу для построения квадрата.
Программа

main.ру
import turtle
from turtle import *
colorfblue', 'pink1) # голубой цвет карандаша, розовый для заливки
begin Jillf) # начать заливку
for i in range (4):

turtlefd(80) # вперед на 80 пикселей
turtle.left(9ty # повернуть влево на 90 градусов

end Jillf) # закончить заливку

Результат

Задача 18
Составить программу для построения штрихпунктирной линии.
Программа

import turtle
turtle.penupQ) # поднять карандаш
turtle.left (180)
turtle.pendownQ # опустить карандаш
for i in range (5):

turtle.pendownQ
135

Книги для программистов: https://t.me/booksforits

turtle.forward^ 15)
turtle.penupl)
turtle.forward^)
turtle.pendownQ)
turtle, do Z()
turtle.penupQ)
turtle.forward(f>)

turtle.homeO
for i in range (5):

turtle.penup()
turtle.forward(8)
turtle.pendown f
turtle, do t()
turtle.penupQ)
turtle.forward(8)
turtle.pendownl)
turtle.forward^ 15)

Результат

Задача 19
Составить программу для построения окружностей.
Программа

import turtle
turtle.pensize(5) # толщина карандаша пять пикселей
turtle.circle(50) # окружность радиуса 50 пикселей
turtle.pencolorfred') # строковое представление цвета

136

Книги для программистов: https://t.me/booksforits

turtle.circleQW)
turtle.pensize(2)
turtle.pencolor{ "blue ")
turtle.circle(30)
turtle.pencolor{ "green ")
turtle. circle(20)

Результат

Построение фракталов

У понятия «фрактал» нет строгого определения, поэтому слово
«фрактал» не является математическим термином. Слово фрактал об­
разовано от латинского fractus и в переводе означает «состоящий из
фрагментов». Обычно так называют геометрическую фигуру. По
определения Бенуа Мандельброта, «фракталом называется структура,
состоящая из частей, которые в каком-то смысле подобны целому».

Роль фракталов в машинной графике сегодня достаточно велика.
Они приходят на помощь, например, когда требуется, с помощью не­
скольких коэффициентов, задать линии и поверхности очень сложной
формы. С точки зрения машинной графики, фрактальная геометрия
незаменима при генерации искусственных облаков, гор, поверхности
моря.

137

Книги для программистов: https://t.me/booksforits

Из определения Мандельброта следует одно из основных
свойств фракталов — самоподобие, то есть небольшая часть фрактала,
содержит информацию обо всем фрактале. Фрактал строится рекур­
сивно из фигур, имеющих разный масштаб.

Понятие /.-системы было введено А. Лидермайером. Формально
/.-система состоит из алфавита, аксиомы (инициализатора) и набора по­
рождающих правил. В алфавит, в частности, входят символы:

F — перемещение на один шаг вправо, прорисовывая след;
b — перемещение на один шаг вправо, не прорисовывая след;
+ — увеличение угла на заданную величину;
----- уменьшение угла на заданную величину.
Терл-графика является подсистемой вывода графического пред­

ставления фрактального объекта.

Задача 20
Составить программу для рисования дерева.
Программа

import turtle
def tree(branchLen,tf

ifbranchLen > 3:
t.forward(branchLen)
t.right(20)
tree(branchLen—l 0,t)
tdeftm
tree(branchLen-\0,t)
t.right(2W)
t.backward(branchLen)

t = turtle. Turtle^)
my Win = turtle.Screen^) # определить холст
t.pencolorllftiWl, 0.001, 0.001))
t.left^W)
t.upO

138

Книги для программистов: https://t.me/booksforits

t.backward(125)
t.downQ
t.color)"green ")
Zree(80,Z)
my Win.exitoncliclf)

Результат

Из рисунка видно, что дерево построено из однотипных элемен­
тов:

I

Задача 21
Составить программу для рисования ковра Серпинского.
Программа

import turtle
def s(n, m):

if n == 0:
turtle.color) 'deeppink')

139

Книги для программистов: https://t.me/booksforits

turtle.begin Jillf)
for _ in range(4f

turtle.forw ard(m)
turtle.left(9ty

turtle.end_fill(f
else:

for _ in range(4f
s(n - 1, m /3)
turtleforwardfm /3)
s(n - 1, m /3)
turtle forw ard(m /3)
turtle.forward(m /3)
turtle.left(9G)

turtle.htf
turtle.tracerflty
5(4, 100)
turtle.done f

Результат для числа итераций 4

Из рисунка видно, что ковер построен из однотипных элемен­
тов:

— число итераций 0:

140

Книги для программистов: https://t.me/booksforits

— число итераций 1:

Задача 22
Составить программу для рисования фрактала Вичека
Программа

Модуль ВХ.ру
import turtle
def create_l_systemfters, axiom, rules):

start_string = axiom
if iters == 0:

return axiom
end_string = ""
for _ in rangeliters):

end_string = "".join(rules[i\ if i in rules else i for i in startstring)
start_string = end-String

return end_string
def draw_l_system(t, instructions, angle, distance):

for cmd in instructions:
if cmd == F':

tforward(distance)
elif cmd ==

t.right) angle)
elif cmd ==

t.left(angle)
axiom = "F—F—F"
rules = {"F":"F+F-F+F"}
iterations = 4
angle = 60
length=?>
size=,2
y_offset~3Q
x_offset =)(}(}

141

Книги для программистов: https://t.me/booksforits

offset_angle=30
width=450
height=450
inst = create_l_system) iterations, axiom, rules')
t = turtle.Turtle^)
print(t)
wn = turtle.ScreenQ
wn.setupfvidth, height)
t.upQ
t. backward(-x_offset)
t.left(90)
t. backward(-y_offset)
t.left(offset angle)
t.down()
t.speedlf)
t.pensize(size)
draw_l_system(t, inst, angle, length)
t.hideturtlef
wn.exitonclickf

Модуль main.py
import B\

Результат для аксиомы F—F—F и порождающего правила
F+F-F+F

142

Книги для программистов: https://t.me/booksforits

Задача 23
Составить программу для рисования снежинки Коха.
Программа

import turtle
def create_l_systemfters, axiom, rules):

start_string = axiom
if iters == 0:

return axiom
end string = ""
for _ in rangefters)'.

end ̂ string = "".joinlrules[i] if i in rules else i for i in startstring)
start_string = end_string

return end_string
def draw_l_systemlt, instructions, angle, distance):

for cmd in instructions'.
if cmd == 'F':

tforwardldistance)
elif cmd ==

t.rightlangle)
elif cmd ==

t.leftlangle)
axiom = "F++F++F"
rules = {"F":"F-F++F-F"}
iterations = 4
angle = 60
length=3
size=2
y_offset=-\(F)
x_offset=-25
offset_angle=3Q
width=450
height=450
inst = create lsystemliterations, axiom, rules)
t = turtle. Turtle^)

143

Книги для программистов: https://t.me/booksforits

wn = turtle.Screen))
wn.setup(width, height)
t.up()
t.backward(-x_offsef)
t.left(90)
t. backwardfyoffset)
t.leftlpffset angle)
t.downl)
t.speed))
t.pensizefize)
draw_l_system(t, inst, angle, length)
t.hideturtlel)
wn.exitonclickl)

Результат

144

Книги для программистов: https://t.me/booksforits

Основы функционального программирования

Функциональное программирование— парадигма программи­
рования, в которой процесс вычисления трактуется как вычисление
значений функций в математическом понимании последних (в отли­
чие от функций как подпрограмм в процедурном программировании).

Противопоставляется парадигме императивного программиро­
вания, которая описывает процесс вычислений как последовательное
изменение состояний. При необходимости в функциональном про­
граммировании вся совокупность последовательных состояний вы­
числительного процесса представляется явным образом, например как
список.

Функциональное программирование предполагает обходиться
вычислением результатов функций от исходных данных и результатов
других функций, и не предполагает явного хранения состояния про­
граммы. Соответственно, не предполагает оно и изменяемость этого
состояния (в отличие от императивного, где одной из базовых кон­
цепций является переменная, хранящая своё значение и позволяющая
менять его по мере выполнения алгоритма).

На практике отличие математической функции от понятия
функции в императивном программировании заключается в том, что
императивные функции могут опираться не только на аргументы, но и
на состояние внешних по отношению к функции переменных, а также
иметь побочные эффекты и менять состояние внешних переменных.
Таким образом, в императивном программировании при вызове одной
и той же функции с одинаковыми параметрами, но на разных этапах
выполнения алгоритма, можно получить разные данные на выходе из-
за влияния на функцию состояния переменных. А в функциональном
языке при вызове функции с одними и теми же аргументами всегда
получаем одинаковый результат: выходные данные зависят только от
входных. Это позволяет средам выполнения программ на функцио­
нальных языках кешировать результаты функций и вызывать их в по­
рядке, не определяемом алгоритмом и распараллеливать их без каких-

145

Книги для программистов: https://t.me/booksforits

либо дополнительных действий со стороны программиста (что обес­
печивают функции без побочных эффектов — чистые функции). Чи­
стые функции обладают несколькими полезными свойствами, многие
из которых можно использовать для оптимизации кода. Результат вы­
зова чистой функции может быть сохранён в таблице значений вместе
с аргументами вызова. За счет этого если функция повторно вызыва­
ется с этими же аргументами, её результат может быть взят прямо из
таблицы значений без вычислений (иногда это называется принципом
прозрачности ссылок). Цена такого подхода увеличение расхода памя­
ти, позволяет существенно увеличить производительность и умень­
шить порядок роста некоторых рекурсивных алгоритмов.

Лямбда-исчисление являются основой для функционального
программирования, многие функциональные языки можно рассматри­
вать как «надстройку» над ними.

Функции высших порядков — это такие функции, которые могут
принимать в качестве аргументов и возвращать другие функции.
В математике такие функции чаще всего называют операторами,
например, оператор взятия производной или оператор интегрирования.

Преимущества функционального программирования:
■ повышение надёжности кода;
■ возможности оптимизации при компиляции;
■ возможности параллелизма;
■ удобство организации модульного тестирования.
Недостатки: отсутствие присваиваний и замена их на порожде­

ние новых данных приводят к необходимости постоянного выделения
и автоматического освобождения памяти, поэтому в системе исполне­
ния функциональной программы обязательным компонентом стано­
вится высокоэффективный сборщик мусора. Нестрогая модель вычис­
лений приводит к непредсказуемому порядку вызова функций, что
создаёт проблемы при вводе-выводе, где порядок выполнения опера­
ций важен.

В Python включено много инструментов, ориентированных на
функциональный стиль.

146

Книги для программистов: https://t.me/booksforits

Функция zipO

Встроенная функция zip объединяет отдельные элементы из
каждой последовательности в кортежи, то есть она возвращает итери­
руемую последовательность, состоящую из кортежей.

zip (последовательность, последовательность,...)

Последовательность — это итерируемая последовательность, то
есть список, кортеж, диапазон или строковые данные.

Функция тар()

Встроенная в Python функция тар — это функция более высоко­
го порядка, которая позволяет обрабатывать одну или несколько по­
следовательностей с использованием заданной функции.

тар (функция, последовательности)

Функция — это ссылка на стандартную б/е/^-функцию, либо
лямбда-функция. Последовательности — это одна или несколько от­
деленных запятыми итерируемых последовательностей.

Объект тар вычисляется во время преобразования в список.
Пример

lambda_func = lambda х, у: х + у
rez=lambda _func(5.5,-7)
print ("rez= ",rez)
print((lambda x, у: x+y)(5, 7))
seq} = (1, -2, 3, 4, -5, 6, 7, 8, -9)
seq2 = (-5, 6, 7, 8, 9, 0, 3, 2, 1)
rez\ =lambda_func(seq 1, seql)
print ("rez 1 = ",rez 1)
print((lambda x,y: x+y)(seq\, seq2))
sp 11 = [,v + у for x, у in zip(seq 1, seq2)]

147

Книги для программистов: https://t.me/booksforits

print("sp 11 = ",sp 11)
result = map(lambda June, seql, seql)
print! "list(resulf)=",list(resulty)

Результат

rez= -1.5 Q X
12
rezl= (1, -2, 3, 4, -5, 6, 7, 8, -9, -5, 6f 7, 8, 9, 0, 3, 2, 1)
(1, -2, 3, 4, -5, 6, 7, 8, -9, -5, 6, 7, 8, 9, 0, 3, 2, 1)
spll= [-4, 4, 10, 12, 4, 6, 10, 10, -8]
list(result)= [-4, 4, 10, 12, 4, 6, 10, 10, -8]
:■ I

Рассмотрим, как работает этот пример.
rez=lambda Junc(5.5, -7) — вызов лямбда-функции с сохранени­

ем результата как объекта rez. При выводе объекта rez выводится на
экран значение -1,5. Значение вещественного типа определяется при
выполнении лямбда-функции исходя из типов аргументов: 5.5 — ве­
щественное число и -7 — целое. Целое автоматически переводится в
вещественное значение, и операция выполняется.

printflambda х, у: х+у)(5, 7)) — лямбда-функция и ее вызов яв­
ляются параметрами функции printty. Результат 12 — целое число, так
как оба параметра лямбда-функции 5 и 7 целые числа.

rezl=lambdaJunJseql, seq2) — вызов лямбда-функции с сохра­
нением результата как объекта rezl. Объект rezl — это новая после­
довательность, включающая последовательности seql, seq2 в соответ­
ствии с правилами выполнения операции сложения последовательно­
стей.

prinjlcimbda х, у: x+y)(seql, seq2)) — операция сложения после­
довательностей, реализованная описанием лямбда-функции и ее вызо­
вом как параметрами функции prinj).

spl 1 = [х + у for х, у in zip(seql, seq2)] — использование функции
zip для формирования новой последовательности, которая, в отличие
от вышеприведенного вызова, выполняет поэлементное сложение
элементов последовательностей seql, seq2.

148

Книги для программистов: https://t.me/booksforits

result = map(lambdaJune, seq\, seq2) — использование функции
map() для формирования новой последовательности с помощью лямб­
да-функции lambdaJunc() для поэлементного сложения элементов
последовательностей seqi, seq2.

149

Книги для программистов: https://t.me/booksforits

Заключение

Изучение основ алгоритмизации и программирования на Python
является важной частью подготовки студентов инженерных специаль­
ностей. Знание базовых конструкций языка и умение их применять
для решения задач математического моделирования позволяет после­
довательно от простого к сложному научиться понимать сущность
исследовательской и научной деятельности. Сначала рассматриваются
примеры простейших программ в императивном стиле программиро­
вания и примеры решения несложных задач линейной, разветвляю­
щейся и циклической структур, задач с последовательностями и фай­
лами. Далее даны алгоритмы методов вычислительной математики и
их реализация в виде программ на Python. Задания по аппроксимации
парной регрессией служат примерами исследовательской деятельно­
сти студентов младших курсов. Практика использования библиотек
питру, matplotlib, pandas и turtle повышает комфортность работы, в
частности за счет графической интерпретации данных. Краткое опи­
сание основ функционального программирования и примеры кон­
струкций, поддерживающих этот стиль программирования, способ­
ствуют дальнейшему освоению языка Python, существенно облегчают
переход к работе с пакетами прикладных программ для решения задач
технических вычислений и являются базой для изучения профессио­
нальных дисциплин, использующих компьютерные технологии, а
также при выполнении курсовых и дипломных работ.

150

Книги для программистов: https://t.me/booksforits

Список литературы

1. Никитина, Т. П. Основы программирования на Python: учеб­
ное пособие / Т. П. Никитина. — Ярославль : Изд-во ЯГТУ, 2021. —
96 с.

2. Прохоренок, Н.А. Python 3. Самое необходимое / Н. А. Про-
хоренок, В. А. Дронов. — СПб. : БХВ-Петербург, 2016. — 464 с.

3. Федоров, Д. Ю. Программирование на языке высокого уровня
Python : учебное пособие для вузов / Д. Ю. Федоров. — 3-е изд., пере-
раб. и доп. — М. : Юрайт, 2021. — 210 с.

151

Книги для программистов: https://t.me/booksforits

Оглавление

ВВЕДЕНИЕ..5

ОСНОВНЫЕ ПОНЯТИЯ И ИНСТРУКЦИИ PYTHON....................6
Структура программы..6
Имена переменных...7
Константы и переменные..8
Операции. Присваивание. Выражение..10
Приоритеты операций.. 12
Последовательность операторов. Блок..12
Ввод данных с клавиатуры. Функция input()..................................13
Вывод данных на экран. Функция print()..13
Форматирование вывода. Метод format().......................................14
Целые числа (int).. 15
Вещественные числа (float)...16
Комплексные числа (complex)... 17
Логические значения (bool).. 20
Строки (str).. 21
Оператор условия. Множественное ветвление.............................. 22
Цикл while... 25
Цикл for..26
Функция range().. 27
Оператор continue. Оператор break. Слово else.............................29

Функции...31
Функции def.. 32
Анонимные функции. Инструкция lambda.................................... 39
Функции генераторы. Инструкция yield.. 41
Рекурсивные функции..42

Файлы. Работа с файлами... 44
Открытие файла..45
Методы для работы с файлами..45
Исключения.. 49
Понятие модуля.. 53
Генерация псевдослучайных чисел. Модуль random....................55

Типы коллекций.. 56
Списки. Функция list()...57
Функции range() и списки... 60
Кортежи. Функция tuple()... 61

152

Книги для программистов: https://t.me/booksforits

Словари. Функция dict()...65
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ДЛЯ ОСВОЕНИЯ ОСНОВНЫХ
ИНСТРУКЦИЙ PYTHON..68

Линейные программы..68
Задача 1...68
Задача 2...69

Ветвления...70
Задача 3...70

Циклы... 72
Задача 4...72
Задача 5...74

Последовательности (задачи с векторами и матрицами)..................77
Задача 6...77
Задача 7...79

Строки..81
Задача 8...81
Задача 9...82

Функции...84
Задача 10...84
Задача 11...85

Работа с файлами Excel. Модуль pandas. DataFrame.........................86
Задача 12...86
Задача 13...89

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ВЫЧИСЛИТЕЛЬНОЙ
МАТЕМАТИКИ... 91

Приближенные методы решения уравнения fix) = 0.........................91
Метод половинного деления.. 92
Метод касательных (метод Ньютона)...93

Решение систем линейных уравнений (СЛАУ)................................. 98
Метод простой итерации (метод Якоби)...98
Метод Зейделя.. 101

Интерполяция по Лагранжу...103
Вычисление определенных интегралов...106

Метод трапеций.. 106
Метод Симпсона (метод парабол)... 107

Решение обыкновенных дифференциальных уравнений (ОДУ) ..110
Метод Рунге — Кутта..ПО

Нахождение минимума функции f(x).. 113
153

Книги для программистов: https://t.me/booksforits

Метод двойного половинного деления...113
Парная регрессия.. 115

Линейная модель парной регрессии.. 115
Нелинейные модели парной регрессии...118

ГРАФИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ДАННЫХ. БИБЛИОТЕКИ
NUMPY, MATPLOTLIB, PANDAS.. 129

Задача 14...129
Задача 15...130
Задача 16...132

ПОСТРОЕНИЕ РИСУНКОВ. БИБЛИОТЕКА TURTLE..............134
Задача 17...135
Задача 18...135
Задача 19...136

Построение фракталов... 137
Задача 20...138
Задача 21...139
Задача 22...141
Задача 23...143

ОСНОВЫ ФУНКЦИОНАЛЬНОГО ПРОГРАММИРОВАНИЯ. 145

ЗАКЛЮЧЕНИЕ...150

СПИСОК ЛИТЕРАТУРЫ...151

154

Книги для программистов: https://t.me/booksforits

Татьяна Павловна НИКИТИНА,
Леонид Владимирович КОРОЛЕВ

ПРОГРАММИРОВАНИЕ. ОСНОВЫ PYTHON ДЛЯ ИНЖЕНЕРОВ
Учебное пособие

Зав. редакцией
литературы по информационным технологиям

и системам связи О. Е. Гайнутдинова
Ответственный редактор В. В. Яески

Корректор Т. А. Быченкова
Выпускающий В. А. Иутин

ЛР № 065466 от 21.10.97
Гигиенический сертификат 78.01.10.953.П.1028

от 14.04.2016 г., выдан ЦГСЭН в СПб
Издательство «ЛАНЬ»

lan@lanbook.ru; www.lanbook.com;
196105, Санкт-Петербург, пр. Юрия Гагарина, д. 1, лит. А

Тел.: (812) 412-92-72, 336-25-09.
Бесплатный звонок по России: 8-800-700-40-71

Подписано в печать 25.11.22.
Бумага офсетная. Гарнитура Школьная. Формат 60x90 Vie-
Печать офсетная/цифровая. Усл. п. л. 9,75. Тираж 30 экз.

Заказ № 006-23.
Отпечатано в полном соответствии

с качеством предоставленного оригинал-макета
в АО «Т8 Издательские Технологии».

109316, г. Москва, Волгоградский пр., д. 42, к. 5.

Книги для программистов: https://t.me/booksforits

mailto:lan@lanbook.ru
http://www.lanbook.com

	Введение
	Основные понятия и инструкции Python
	Структура программы
	Имена переменных
	Константы и переменные
	Операции. Присваивание. Выражение
	Приоритеты операций
	Последовательность операторов. Блок.
	Ввод данных с клавиатуры. Функция input()
	Вывод данных на экран. Функция print()
	Форматирование вывода. Метод format()
	Целые числа (int)
	Вещественные числа (float)
	Комплексные числа (complex)
	Логические значения (bool)
	Строки (str)
	Операторы условия. Множественное ветвление.
	Цикл while
	Цикл for
	Функция range()
	Оператор continue. Оператор break. Слово else

	Функции
	Функция def
	Анонимные функции. Инструкция lambda
	Функции генераторы. Инструкция yield
	Рекурсивные функции

	Файлы. Работа с файлами
	Открытие файла
	Методы для работы с файлами
	Исключения
	Понятие модуля
	Генерация псевдослучайных чисел. Модуль random

	Типы коллекций
	Списки. Функция list()
	Функция range() и списки
	Кортежи. Функция tuple()
	Словари. Функция dict()

	Примеры решения задач для освоения основных инструкций Python
	Линейные программы
	Задача 1
	Задача 2

	Ветвления
	Задача 3

	Циклы
	Задача 4
	Задача 5

	Последовательности
	Задача 6
	Задача 7

	Строки
	Задача 8
	Задача 9

	Функции
	Задача 10
	Задача 11

	Работа с файлами Excel. Модуль pandas. DataFrame
	Задача 12
	Задача 13

	Примеры решения задач вычислительной математики
	Приближённые методы решения уравнения f(x) = 0
	Метод половинного деления
	Метод касательных (метод Ньютона)

	Решение систем линейных уравнений (СЛАУ)
	Метод простой итерации (метод Якоби)
	Метод Зейделя

	Интерполяция по Лагранжу
	Вычисление определённых интегралов
	Метод трапеций
	Метод Симпсона (метод парабол)

	Решение обыкновенных дифференциальных уравнений (ОДУ)
	Метод Рунге - Кутта

	Нахождение минимума функции f(x)
	Метод двойного половинного деления

	Парная регрессия
	Линейная модель парной регрессии
	Нелинейные модели парной регрессии

	Графическая интерпретация данных. Библиотеки numpy, matplotlib, pandas
	Задача 14
	Задача 15
	Задача 16

	Построение рисунков. Библиотека turtle
	Задача 17
	Задача 18
	Задача 19
	Построение фракталов
	Задача 20
	Задача 21
	Задача 22
	Задача 23

	Основы функционального программирования
	Заключение
	Список литературы
	Оглавление

